Degradation of Glutathione in Aspergillus Nidulans

Abstract

Relative transcriptions of Aspergillus nidulans dug1-3 (orthologes of Saccharomyces cerevisiae DUG—deficient in utilization of glutathione—pathway genes) and ggtA encoding γ-glutamyl transpeptidase were studied under conditions inducing glutathione degradation. GgtA was induced in all cases when glutathione levels decreased, but addition of yeast extract, which moderated glutathione degradation, enhanced its induction. Although dug2 showed constitutive transcription, dug1 and dug3 were induced by carbon and nitrogen starvation and yeast extract did not caused significant changes in their relative transcription. The in silico reconstructed DUG pathway of A. nidulans is a promising candidate for cytosolic GSH degradation induced by carbon/nitrogen stress.

References

  1. 1.

    Adamis, P. D., Mannarino, S. C., Eleutherio, E. C. (2009) Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex. FEBS Lett. 583, 1489–1492.

    CAS  Article  Google Scholar 

  2. 2.

    Bello, M. H., Morin, D., Epstein, L. (2013) γ-Glutamyltransferases (GGT) in Colletotrichum graminicola: mRNA and enzyme activity, and evidence that CgGGT1 allows glutathione utilization during nitrogen deficiency. Fungal Genet. Biol. 51, 72–83.

    CAS  Article  Google Scholar 

  3. 3.

    Heisterkamp, N., Groffen, J., Warburton, D., Sneddon, T. P. (2008) The human gamma-glutamyltransferase gene family. Hum. Genet. 123, 321–332.

    CAS  Article  Google Scholar 

  4. 4.

    Kaur, H., Ganguli, D., Bachhawat, A. K. (2012) Glutathione degradation by the alternative pathway (DUG pathway) in Saccharomyces cerevisiae is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. J. Biol. Chem. 287, 8920–8931.

    CAS  Article  Google Scholar 

  5. 5.

    Kimura, K., Tran, L. S., Uchida, I., Itoh, Y. (2004) Characterization of Bacillus subtilis γ-glutamyltranspeptidase and its involvement in the degradation of capsule poly-gammaglutamate. Microbiol. 150, 4115–4123.

    CAS  Article  Google Scholar 

  6. 6.

    Kumar, A., Tikoo, S., Maity, S., Sengupta, S., Sengupta, S., Kaur, A., Bachhawat, A. K. (2012) Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep. 13, 1095–1101.

    CAS  Article  Google Scholar 

  7. 7.

    Ohkama-Ohtsu, N., Oikawa, A., Zhao, P., Xiang, C., Saito, K., Oliver, D. J. (2008) A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol. 148, 1603–1613.

    CAS  Article  Google Scholar 

  8. 8.

    Pócsi, I., Prade, R. A., Penninckx, M. J. (2004) Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49, 1–76.

    Article  Google Scholar 

  9. 9.

    Shibayama, K., Wachino, J., Arakawa, Y., Saidijam, M., Rutherford, N. G., Henderson, P. J. (2007) Metabolism of glutamine and glutathione via gamma-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism. Mol. Microbiol. 64, 396–406.

    CAS  Article  Google Scholar 

  10. 10.

    Szilágyi, M., Miskei, M., Karányi, Z., Lenkey, B., Pócsi, I., Emri, T. (2013) Transcriptome changes initiated by carbon starvation in Aspergillus nidulans. Microbiology 159, 176–190.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tamás Emri.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spitzmüller, Z., Hajdú, M., Pócsi, I. et al. Degradation of Glutathione in Aspergillus Nidulans. BIOLOGIA FUTURA 66, 242–245 (2015). https://doi.org/10.1556/018.66.2015.2.10

Download citation

Keywords

  • Glutathione degradation
  • γ-glutamyl transpeptidase
  • DUG pathway
  • carbon stress
  • Aspergillus nidulans