Chemical Papers

, Volume 70, Issue 12, pp 1632–1641 | Cite as

Co-precipitation behaviour of titanium-containing silicate solution

  • Hui-Hong Lü
  • Min-Zhi Wu
  • Zheng-Li Zhang
  • Xing-Rong Wu
  • Liao-Sha Li
  • Zhi-Fang Gao
Original Paper


The co-precipitation behaviour of a simulated Al2(SO4)3-TiOSO4-Na2SiO3 solution that imitated the lixivium of Ti-bearing blast furnace slag (Ti-slag) leached by sulphuric acid was investigated in this study. Various chemical analyses were employed to study the selective precipitation of multiple target components. Based on the high-added-value applications of Ti-slag, a new method was developed to prepare aluminium titanate composites from titanium-containing silicates. The findings demonstrate that the onsets of Ti and Al precipitation occur at pH values of 3.5 and 5.0, respectively, followed by Si precipitation. The particle sizes of the co-precipitates were greatly influenced by the precipitants, pH and the initial Al/Ti mole ratio. The results also show that the precipitation ratio of Ti, Al and Si generally increases with the pH and temperature, regardless of the Al/Ti mole ratio. The Si-O-Al, Ti-O-Al, and Ti-O-Si bonds that were formed were dependent on the pH and the initial Al/Ti mole ratio. There was a synthesis path for β-Al2TiO5 (AT) from the solid-state reaction between rutile and α-Al2O3 at 1362.5°C. The AT composites were successfully prepared by sintering the co-precipitates at 1450°C, which exhibited good thermal stability as estimated by the XRD measurements of the sample annealed at 1200°C for 4 hours.


co-precipitation behaviour resources aluminium titanate composites titanium containing silicates Ti-slag 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aravind, P. R., Mukundan, P., Pillai, P. K., & Warrier, K. G. K. (2006). Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous and Mesoporous Materials, 96, 14–20. DOI: 10.1016/j.micromeso.2006.06.014.CrossRefGoogle Scholar
  2. Belver, C., Muńoz, M. A. B., & Vicente, M. A. (2002). Chemical activation of a kaolinite under acid and alkaline conditions. Chemistry of Materials, 14, 2033–2043. DOI: 10.1021/cm0111736.CrossRefGoogle Scholar
  3. Chakravorty, A. K., & Ghosh, D. K. (1988). Synthesis and 980°C phase development of some mullite gels. Journal of the American Ceramic Society, 71, 978–987. DOI: 10.1111/j.1151-2916.1988.tb07568.x.CrossRefGoogle Scholar
  4. Chen, D. S., Zhao, L. S., Liu, Y. H., Qi, T., Wang, J. C., & Wang, L. N. (2013). A novel process for recovery of iron, titanium and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Journal of Hazardous Materials, 244–245, 588–595. DOI: 10.1016/j.jhazmat.2012.10.052.CrossRefGoogle Scholar
  5. Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: Theory and experiment. Chemical Physics, 339, 44–56. DOI: 10.1016/j.chemphys.2007.07.020.CrossRefGoogle Scholar
  6. Du, X. L., Wang, Y. Q., Su, X. H., & Li, J. G. (2009). Influences of pH value on the microstructure and phase transformation of aluminum hydroxide. Powder Technology, 192, 40–46. DOI: 10.1016/j.powtec.2008.11.008.CrossRefGoogle Scholar
  7. Duan, J. M., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100–102, 475–502. DOI: 10.1016/s0001-8686(02)00067-2.CrossRefGoogle Scholar
  8. El-Masry, M. H., Sadek, O. M., & Mekhemer, W. K. (2004). Purification of raw surface water using electro-coagulation method. Water, Air & Soil Pollution, 158, 373–385. DOI: 10.1023/b:wate.0000044857.02199.45.CrossRefGoogle Scholar
  9. Farmer, V. C. (1974). The infrared spec t ra of minerals. London, UK: Mineralogical Society. DOI: 10.1180/mono-4.CrossRefGoogle Scholar
  10. Huang, Y. X., Senos, A. M. R., Rocha, J., & Baptista, J. L. (1997). Gel formation in mullite precursors obtained via tetraethylorthosilicate (TEOS) pre-hydrolysis. Journal of Materials Science, 32, 105–110. DOI: 10.1023/a:1018575115 770.CrossRefGoogle Scholar
  11. Huang, Y. X., Senos, A. M. R., & Baptista, J. L. (1998). Effect of excess SiO2 on the reaction sintering of aluminium titanate-25 vol. % mullite composites. Ceramics International, 24, 223–228. DOI: 10.1016/s0272-8842(97)00006-0.CrossRefGoogle Scholar
  12. Jung, Y. S., Kim, D. W., Kim, Y. S., Park, E. K., & Baeck, S. H. (2008). Synthesis of alumina–titania solid solution by sol–gel method. Journal of Physics and Chemistry of Solids, 69, 1464–1467. DOI: 10.1016/j.jpcs.2007.10.037.CrossRefGoogle Scholar
  13. Kim, J. H., Kim, M. W., & Yu, J. S. (2011). Recycle of silicate waste into mesoporous materials. Environmental Science & Technology, 45, 3695–3701. DOI: 10.1021/es103510r.CrossRefGoogle Scholar
  14. Kimura, T., Suzuki, M., Ikeda, T., Kato, K., Maeda, M., & Tomura, S. (2006). Silica-based mesoporous materials derived from Ti containing layered polysilicate kanemite. Microporous and Mesoporous Materials, 95, 146–153. DOI: 10.1016/j.micromeso.2006.05.021.CrossRefGoogle Scholar
  15. Kurc, B. (2014). Gel electrolytes based on poly(acrylonitrile)/ sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries. Electrochimica Acta, 125, 415–420. DOI: 10.1016/j.electacta.2014.01.117.CrossRefGoogle Scholar
  16. Lee, S. O., Jung, K. H., Oh, C. J., Lee, Y. H., Tran, T., & Kim, M. J. (2009). Precipitation of fine aluminium hydroxide from Bayer liquors. Hydrometallurgy, 98, 156–161. DOI: 10.1016/j.hydromet.2009.04.014.CrossRefGoogle Scholar
  17. Li, L. S., Liu, J. B., Wu, X. R., Ren, X., Bing, W. B., & Wu, L. S. (2010). Influence of Al2O3 on equilibrium sinter phase in N2 atmosphere. ISIJ International, 50, 327–329. DOI: 10.2355/isijinternational.50.327.CrossRefGoogle Scholar
  18. Li, L. S., & Lu, T. T. (2011). Condensation mechanism and influencing factor of stability of complicated silicic acid system. AICHE Journal, 57, 1339–1343. DOI: 10.1002/aic.12374.CrossRefGoogle Scholar
  19. Liu, Q., Wang, A. Q., Wang, X. H., Gao, P., Wang, X. D., & Zhang, T. (2008). Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Microporous and Mesoporous Materials, 111, 323–333. DOI: 10.1016/j.micromeso.2007.08.007.CrossRefGoogle Scholar
  20. Liu, P. C., Zhu, Y. Z., Ma, J. H., Yang, S. G., Gong, J. H., & Jian, X. (2013). Effect of boehmite sol on the crystallization behaviour and densification of mullite formed from a sol–gel precursor. Progress in Natural Science: Materials International, 23, 145–151. DOI: 10.1016/j.pnsc.2013.02.004.CrossRefGoogle Scholar
  21. Lü, H. H., Li, N., Wu, X. R., Li, L. S., Gao, Z. F., & Shen, X. M. (2013). A novel conversion of Ti-bearing blast-furnace slag into water splitting photocatalyst with visible-light-response. Metallurgical and Materials Transaction B, 44, 1317–1320. DOI: 10.1007/s11663-013-9973-y.CrossRefGoogle Scholar
  22. Matsuda, A., Higashi, Y., Tadanaga, K., & Tatsumisago, M. (2006). Hot-water treatment of sol–gel derived SiO2–TiO2 microparticles and application to electrophoretic deposition for thick films. Journal of Materials Science, 41, 8101–8108. DOI: 10.1007/s10853-006-0419-7.CrossRefGoogle Scholar
  23. Oikonomou, P., Dedeloudis, C., Stournaras, C. J., & Ftikos, C. (2007). Stabilized tialite–mullite composites with low thermal expansion and high strength for catalytic converters. Journal of the European Ceramic Society, 27, 3475–3482. DOI: 10.1016/j.jeurceramsoc.2006.07.020.CrossRefGoogle Scholar
  24. Okada, K., & Otsuka, N. (1986). Characterization of the spinel phase from SiO2–Al2O3 xerogels and the formation process of mullite. Journal of the American Ceramic Society, 69, 652–656. DOI: 10.1111/j.1151-2916.1986.tb07466.x.CrossRefGoogle Scholar
  25. Periyat, P., Baiju, K. V., Mukundan, P., Pillai, P. K., & Warrier, K. G. K. (2008). High temperature stable mesoporous anatase TiO2 photocatalyst achieved by silica addition. Applied Catalysis A, 349, 13–19. DOI: 10.1016/j.apcata.2008. 07.022.CrossRefGoogle Scholar
  26. Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions. Oxford, UK: Pergamon.Google Scholar
  27. Richmond, W. R., Jones, R. L., & Fawell, P. D. (1998). The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chemical Engineering Journal, 71, 67–75. DOI: 10.1016/s1385-8947(98)00105-3.CrossRefGoogle Scholar
  28. Schneider, H., & Komarneni, S. (2005). Mullite. Weinheim, Germany: Wiley. DOI: 10.1002/3527607358.CrossRefGoogle Scholar
  29. Sobhani, M., Ebadzadeh, T., & Rahimipour, M. R. (2014). Formation and densification behavior of reaction sintered alumina-20 wt. % aluminium titanate nano-composites. International Journal of Refractory Metals and Hard Materials, 47, 49–53. DOI: 10.1016/j.ijrmhm.2014.06.018.CrossRefGoogle Scholar
  30. Wellia, D. V., Xu, Q. C., Sk, M. A., Lim, K. H., Lim, T. M., & Tan, T. T. Y. (2011). Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Applied Catalysis A, 401, 98–105. DOI: 10.1016/j.apcata.2011.05.003.CrossRefGoogle Scholar
  31. Wu, Z. J., Yue, H. F., Li, L. S., Jiang, B. F., Wu, X. R., & Wang, P. (2010). Synthesis and electrochemical properties of multi-doped LiFePO4/C prepared from the steel slag. Journal of Power Sources, 195, 2888–2893. DOI: 10.1016/j.jpowsour.2009.11.058.CrossRefGoogle Scholar
  32. Wu, X. R., Wang, H. H., Li, L. S., Lü, H. H., Wu, Z. J., & Shen, X. M. (2013a). Synthesis of cordierite powder from blast furnace slag. Transactions of the Indian Ceramic Society, 72, 197–200. DOI: 10.1080/0371750x.2013.851622.CrossRefGoogle Scholar
  33. Wu, X. R., Lü, H. H., Li, L. S., Wang, P., Shen, X. M., Zhu, J. H., Cao, F. B., & Li, M. H. (2013b). China Patent No. 201110101537.3. Beijing, China: China Patent & Trademark Office. 26CAE4DB031259396AGoogle Scholar
  34. Xie, X., Sun, J., Liu, Y., & Jiang, W. (2010). Use of silica sol as a transient phase for fabrication of aluminium titanate–mullite ceramic composite. Scripta Materialia, 63, 641–644. DOI: 10.1016/j.scriptamat.2010.05.038.CrossRefGoogle Scholar
  35. Zhou, S. X., Antonietti, M., & Niederberger, M. (2007). Low-temperature synthesis of γ-alumina nanocrystals from aluminum acetylacetonate in nonaqueous media. Small, 3, 763–767. DOI: 10.1002/smll.200700027.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Hui-Hong Lü
    • 1
  • Min-Zhi Wu
    • 1
  • Zheng-Li Zhang
    • 1
  • Xing-Rong Wu
    • 1
  • Liao-Sha Li
    • 1
  • Zhi-Fang Gao
    • 1
  1. 1.Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of EducationAnhui University of TechnologyAnhuiChina

Personalised recommendations