Skip to main content
Log in

Magnetic fluids’ stability improved by oleic acid bilayer-coated structure via one-pot synthesis

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

To improve the magnetic fluids’ stability and demonstrate the relationships between the bilayercoated structure and the stability, a simple method was proposed for preparingoleic acid bilayercoated Fe3O4 magnetic fluids. The hydrophilic Fe3O4 nanoparticles coated with the bilayer-oleic acid were synthesised by a one-pot process through the chemical co-precipitation under alkaline conditions. Next, the hydrophilic Fe3O4 particles were transformed to hydrophobic particles via carboxyl-protonated modification. Carboxyl-protonated modification was found to be a reversible process, i.e. the lipophilicity of the coated Fe3O4 nanoparticles could be controlled by protonating/ deprotonating the terminal carboxyl group. In addition, the space steric effect could be significantly enhanced by maximising the oleic acid adsorption and increasing the thickness of the coated layer, resulting in the oleic acid bilayer-coated Fe3O4 nanoparticles exhibiting better performance in the stability of the hexanemagnetic fluids than oleic acid monolayer-coated Fe3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aadinath, W., Ghosh, T., & Anandharamakrishnan, C. (2016). Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements. Journal of Magnetism and Magnetic Materials, 401, 1159–1172. DOI: 10.1016/j.jmmm. 2015.10.123.

    Article  CAS  Google Scholar 

  • Balakin, B. V., Notøy, I., Hoffmann, A. C., & Kosinski, P. (2012). The formation of deposit in a magnetic fluid: Numerical and experimental study. Powder Technology, 228, 108–114. DOI: 10.1016/j.powtec.2012.05.004.

    Article  CAS  Google Scholar 

  • Baltrusaitis, J., Cwiertny, D. M., & Grassian, V. H. (2007). Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Physical Chemistry Chemical Physics, 9, 5542–5554. DOI: 10.1039/b709167b.

    Article  CAS  Google Scholar 

  • Bateer, B., Qu, Y., Meng, X. Y., Tian, C. G., Du, S. C., Wang, R. H., Pan, K., & Fu, H. G. (2013). Preparation and magnetic performance of the magnetic fluid stabilized by bi-surfactant. Journal of Magnetism and Magnetic Materials, 332, 151–156. DOI: 10.1016/j.jmmm.2012.12.009.

    Article  CAS  Google Scholar 

  • Berkovsky, B., Medvedev, V. F., & Krakov, M. S. (1993). Magnetic fluids: Engineering applications. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Chen, M. J., Shen, H., Li, X., & Liu, H. F. (2014). Facile synthesis of oil-soluble Fe3O4 nanoparticles based on a phase transfer mechanism. Applied Surface Science, 307, 306–310. DOI: 10.1016/j.apsusc.2014.04.031.

    Article  CAS  Google Scholar 

  • Chu, M. H., Chen, F., Li, Y. B., & Li, X. H. (2015). Preparation and characterization of Fe3O4/carboxyl methyl starch drug-loaded magnetic fluids. In Proceedings of the 3rd International Conference on Advances in Computer Science and Information Technology (ICACSIT 2015), 21 October 2015 (pp. 475–481). Telangana, India: The World Academy of Research in Science and Engineering.

    Google Scholar 

  • De Palma, R., Peeters, S., Van Bael, M. J., Van den Rul, H., Bonroy, K., Laureyn, W., Mullens, J., Borghs, G., & Maes, G. (2007). Silane ligand exchange to make hydrophobic su-perparamagnetic nanoparticles water-dispersible. Chemistry of Materials, 19, 1821–1831. DOI: 10.1021/cm0628000.

    Article  Google Scholar 

  • Fan, H. G., Leve, E. W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M. C., & Brinker, C. J. (2005). Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Letters, 5, 645–648. DOI: 10.1021/nl050017l.

    Article  CAS  Google Scholar 

  • Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36, 1564–1574. DOI: 10.1002/sia.1984.

    Article  CAS  Google Scholar 

  • Hawn, D. D., & DeKoven, B. M. (1987). Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and Interface Analysis, 10, 63–74. DOI: 10.1002/sia.740100203.

    Article  CAS  Google Scholar 

  • Holm, C., & Weis, J. J. (2005). The structure of ferrofluids: A status report. Current Opinion in Colloid & Interface Science, 10, 133–140. DOI: 10.1016/j.cocis.2005.07.005.

    Article  CAS  Google Scholar 

  • Hong, R. Y., Zhang, S. Z., Han, Y. P., Li, H. Z., Ding, J., & Zheng, Y. (2006). Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technology, 170, 1–11. DOI: 10.1016/j.powtec.2006.08.017.

    Article  CAS  Google Scholar 

  • Jia, Y., Yu, X. Y., Luo, T., Zhang, M. Y., Liu, J. H., & Huang, X. J. (2013). Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism. Dalton Transactions, 42, 1921–1928. DOI: 10.1039/c2dt32522e.

    Article  CAS  Google Scholar 

  • Kumar, T. V. V., Prabhakar, S., & Raju, G. B. (2002). Adsorption of oleic acid at sillimanite/water interface. Journal of Colloid and Interface Science, 247, 275–281. DOI: 10.1006/jcis.2001.8131.

    Article  CAS  Google Scholar 

  • Lan, Q., Liu, C., Yang, F., Liu, S. Y., Xu, J., & Sun, D. J. (2007). Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. Journal of Colloid and Interface Science, 310, 260–269. DOI: 10.1016/j.jcis.2007.01.081.

    Article  CAS  Google Scholar 

  • Lee, S. Y., & Harris, M. T. (2006). Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. Journal of Colloid and Interface Science, 293, 401–408. DOI: 10.1016/j.jcis.2005.06.062.

    Article  CAS  Google Scholar 

  • Lee, S. M., Kuan, Y. D., & Sung, M. F. (2011). Design and fabrication of a magnetic fluid micropump for applications in direct methanol fuel cells. Journal of Power Sources, 196, 7609–7615. DOI: 10.1016/j.jpowsour.2011.04.060.

    Article  CAS  Google Scholar 

  • Liao, S. H., Liu, C. H., Bastakoti, B. P., Suzuki, N., Chang, Y., Yamauchi, Y., Lin, F. H., & Wu, K. C. W. (2015). Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. International Journal of Nanomedicine, 10, 3315–3328. DOI: 10.2147/ijn.s68719.

    Article  CAS  Google Scholar 

  • Limaye, M. V., Singh, S. B., Date, S. K., Kothari, D., Reddy, V. R., Gupta, A., Sathe, V., Choudhary, R. J., & Kulkarni, S. K. (2009). High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. The Journal of Physical Chemistry B, 113, 9070–9076. DOI: 10.1021/jp810975v.

    Article  CAS  Google Scholar 

  • Liu, X. Q., Ma, Z. Y., Xing, J. M., & Liu, H. Z. (2004). Preparation and characterization of amino–silane modified super-paramagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials, 270, 1–6. DOI: 10.1016/j.jmmm.2003. 07.006.

    Article  CAS  Google Scholar 

  • McIntyre, N. S., & Zetaruk, D. G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 49, 1521–1529. DOI: 10.1021/ac50019a016.

    Article  CAS  Google Scholar 

  • Muhler, M., Nielsen, L. P., Törnqvist, E., Clausen, B. S., & Topsøe, H. (1992). Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts. Catalysis Letters, 14, 241–249. DOI: 10.1007/bf00769661.

    Article  CAS  Google Scholar 

  • Pinho, M., Génevaux, J. M., Dauchez, N., Brouard, B., Collas, P., & Mézière, H. (2014). Damping induced by ferrofluid seals in ironless loudspeaker. Journal of Magnetism and Magnetic Materials, 356, 125–130. DOI: 10.1016/j.jmmm.2013.12.047.

    Article  CAS  Google Scholar 

  • Shen, L. F., Laibinis, P. E., & Hatton, T. A. (1999a). Aqueous magnetic fluids stabilized by surfactant bilayers. Journal of Magnetism and Magnetic Materials, 194, 37–44. DOI: 10.1016/s0304-8853(98)00587-3.

    Article  CAS  Google Scholar 

  • Shen, L. F., Laibinis, P. E., & Hatton, T. A. (1999b). Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir, 15, 447–453. DOI: 10.1021/la9807661.

    Article  CAS  Google Scholar 

  • Szczech, M., & Horak, W. (2015). Tightness testing of rotary ferromagnetic fluid seal working in water environment. Industrial Lubrication and Tribology, 67, 455–459. DOI: 10.1108/ilt-02-2015-0014.

    Article  Google Scholar 

  • Thorat, N. D., Patil, R. M., Khot, V. M., Salunkhe, A. B., Prasad, A. I., Barick, K. C., Ningthoujam, R. S., & Pawar, S. H. (2013). Highly water-dispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application. New Journal of Chemistry, 37, 2733–2742. DOI: 10.1039/c3nj00007a.

    Article  CAS  Google Scholar 

  • Wang, Y., Teng, X. W., Wang, J. S., & Yang, H. (2003). Solvent-free atom transfer radical polymerization in the synthesis of Fe 2O3@polystyrene core–shell nanoparticles. Nano Letters, 3, 789–793. DOI: 10.1021/nl034211o.

    Article  CAS  Google Scholar 

  • Wang, Z. Z., & Li, D. C. (2015). Theoretical analysis and experimental study on loading process among stages of magnetic fluid seal. International Journal of Applied Electromagnetics and Mechanics, 48, 101–110. DOI: 10.3233/jae-140126.

    Article  Google Scholar 

  • Willis, A. L., Turro, N. J., & O’Brien, S. (2005). Spectroscopic characterization of the surface of iron oxide nanocrystals. Chemistry of materials, 17, 5970–5975. DOI: 10.1021/cm051370v.

    Article  CAS  Google Scholar 

  • Wilson, D., & Langell, M. A. (2014). XPS analysis of oley-lamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Applied Surface Science, 303, 6–13. DOI: 10.1016/j.apsusc.2014.02.006.

    Article  CAS  Google Scholar 

  • Wu, N. Q., Fu, L., Su, M., Aslam, M., Wong, K. C., & Dravid, V. P. (2004). Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 4, 383–386. DOI: 10.1021/nl1035139x.

    Article  CAS  Google Scholar 

  • Wu, H. M., Zhu, H. Z., Zhuang, J. Q., Yang, S., Liu, C., & Cao, Y. C. (2008). Water-soluble nanocrystals through dualinteraction ligands. Angewandte Chemie International Edition, 47, 3730–3734. DOI: 10.1002/anie.200800434.

    Article  CAS  Google Scholar 

  • Xu, X. Q., Shen, H., Xu, J. R., & Li, X. J. (2004). Aqueous-based magnetite magnetic fluids stabilized by surface small micelles of oleolysarcosine. Applied Surface Science, 221, 430–436. DOI: 10.1016/s0169-4332(03)00959-0.

    Article  CAS  Google Scholar 

  • Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254, 2441–2449. DOI: 10.1016/j.apsusc.2007.09.063.

    Article  CAS  Google Scholar 

  • Yang, K., Peng, H. B., Wen, Y. H., & Li, N. (2010). Reexamination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Applied Surface Science, 256, 3093–3097. DOI: 10.1016/j. apsusc.2009.11.079.

    Article  CAS  Google Scholar 

  • Yu, W. W., Chang, E., Sayes, C. M., Drezek, R., & Colvin, V. L. (2006). Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology, 17, 4483–4487. DOI: 10.1088/0957-4484/17/17/033.

    Article  CAS  Google Scholar 

  • Zhou, C. H., Li, X. M., Si, H. L., Guo, Y., Xu, L., Zhang, Z. J., & Li, L. S. (2011). Synthesis of water-soluble Fe3O4 nanocrystals with a phase-transfer method. Acta Chimica Sinica, 69, 1381–1386.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MJ., Shen, H., Li, X. et al. Magnetic fluids’ stability improved by oleic acid bilayer-coated structure via one-pot synthesis. Chem. Pap. 70, 1642–1648 (2016). https://doi.org/10.1515/chempap-2016-0096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0096

Keywords

Navigation