Skip to main content
Log in

Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Inulin and glycerol were used as substrates for efficient erythritol and citric acid production by newly engineered Yarrowia lipolytica strains. Hydrolysis of inulin by the Y. lipolytica Wratislavia K1 strain was established by expressing the Kluyveromyces marxianus INU1 gene. Erythritol was produced in two stages: inulin was used for biomass formation, followed by erythritol biosynthesis initiated by glycerol addition. The highest titer of erythritol obtained, 120.9 g L−1 with the yield of 0.6 g g−1, was produced by the K1 INU 6 strain. Moreover, the K1 INU 6 strain in fed-batch culture produced a high amount of citric acid: 105.2 g L−1 after 235 h from 200 g L−1 of inulin. Maximum activity of inulinase during this culture was 14000 U g−1 of cell dry mass. The presented study proves the potential of new Y. lipolytica transformants for efficient erythritol and citric acid production from inexpensive raw materials such as inulin and glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, S., Suzuki, T., Sumino, Y., Nakao, Y., & Fukuda, H. (1973a). Induction and citric acid productivity of fluoroacetate- sensitive mutant strains of Candida lipolytica. Agricultural and Biological Chemistry, 37, 879–884. DOI: 10.1271/ bbb1961.37.879.

    Article  CAS  Google Scholar 

  • Akiyama, S., Suzuki, T., Sumino, Y., Nakao, Y., & Fukuda, H. (1973b). Relationship between aconitate hydratase activity and citric acid productivity in fluoroacetate-sensitive mutant strain of Candida lipolytica. Agricultural and Biological Chemistry, 37, 885–888. DOI: 10.1271/bbb1961.37.885.

    Article  CAS  Google Scholar 

  • Baldwin, T. K., Gaffoor, I., Antoniw, J., Andries, C., Guenther, J., Urban, M., Hallen-Adams, H. E., Pitkin, J., Hammond-Kosack, K. E., & Trail, F. (2010). A partial chromosomal deletion caused by random plasmid integration resulted in a reduced virulence phenotype in Fusarium graminearum. Molecular Plant-Microbe Interactions, 23, 1083–1096. DOI: 10.1094/mpmi-23-8-1083.

    Article  CAS  Google Scholar 

  • Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinaseexpressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82, 211–220. DOI: 10.1007/s00253-008-1827-1.

    Article  CAS  Google Scholar 

  • Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., & Zhao, C. H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource Technology, 102, 4295–4303. DOI: 10.1016/j.biortech.2010.12.086.

    Article  CAS  Google Scholar 

  • Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology, 110, 73–84. DOI: 10.1016/j.jbiotec. 2004.01.007.

    Article  CAS  Google Scholar 

  • Cui, W., Wang, Q., Zhang, F., Zhang, S. C., Chi, Z. M., & Madzak, C. (2011). Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. Process Biochemistry, 46, 1442–1448. DOI: 10.1016/j.procbio.2011.03.017.

    Article  CAS  Google Scholar 

  • Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1, 36–50.

    CAS  Google Scholar 

  • Finogenova, T. V., Shishkanova, N. V., Fausek, E. A., & Eremina, S. S. (1991). Biosynthesis of isocitric acid from ethanol by yeasts. Applied Microbiology and Biotechnology, 36, 231–235. DOI: 10.1007/bf00164426.

    Article  CAS  Google Scholar 

  • Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: A review of prospects. Applied Biochemistry and Microbiology, 41, 418–425. DOI: 10.1007/s10438-005-0076-7.

    Article  CAS  Google Scholar 

  • F¨orster, A., Jacobs, K., Juretzek, T., Mauersberger, S., & Barth, G. (2007a). Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 77,. DOI: 10.1007/s00253-007-1205-4.

  • F¨orster, A., Aurich, A., Mauersberger, S., & Barth, G. (2007b). Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 75, 1409–1417. DOI: 10.1007/s00253-007- 0958-0.

    Article  Google Scholar 

  • Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, S287–S291. DOI: 10.1079/bjn/2002550.

    Article  CAS  Google Scholar 

  • Gong, F., Sheng, J., Chi, Z., & Li, J. (2007). Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology & Biotechnology, 34, 179–185. DOI: 10.1007/s10295- 006-0184-2.

    Article  CAS  Google Scholar 

  • Grand View Research (2015). Inulin market analysis by application (food & beverage, dietary supplements, pharmaceuticals) and segment forecasts to 2020. Retrieved from http://www.grandviewresearch.com/industry-analysis/inulin-market

    Google Scholar 

  • Gritz, L., & Davies, J. (1983). Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccha romyces cerevisiae. Gene, 25, 179–188. DOI: 10.1016/0378- 1119(83)90223-8.

    Article  CAS  Google Scholar 

  • Holz, M., F¨orster, A., Mauersberger, S., & Barth, G. (2009). Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 81, 1087–1096. DOI: 10.1007/s00253-008- 1725-6.

    Article  CAS  Google Scholar 

  • Jeya, M., Lee, K. M., Tiwari, M. K., Kim, J. S., Gunasekaran, P., Kim, S. Y., Kim, I. W., & Lee, J. K. (2009). Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Applied Microbiology and Biotechnology, 83, 225–231. DOI: 10.1007/s00253-009-1871-5.

    Article  CAS  Google Scholar 

  • Kamzolova, S. V., Morgunov, I. G., Aurich, A., Perevoznikova, O. A., Shishkanova, N. V., Stottmeister, U., & Finogenova, T. V. (2005). Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technology and Biotechnology, 43, 113–122.

    CAS  Google Scholar 

  • Kamzolova, S. V., Finogenova, T. V., & Morgunov, I. G. (2008). Microbial production of citric and isocitric acids from sunflower oil. Food Technology and Biotechnology, 46, 51–59.

    CAS  Google Scholar 

  • Kobayashi, Y., Iwata, H., Mizushima, D., Ogihara, J., & Kasumi, T. (2015). Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Letters in Applied Microbiology, 60, 475–480. DOI: 10.1111/lam.12391.

    Article  CAS  Google Scholar 

  • Lazar, Z., Walczak, E., & Robak, M. (2011). Simultaneous production of citric acid and invertase by Yarrowia lipolytica SUC+ transformants. Bioresource Technology, 102, 6982–6989. DOI: 10.1016/j.biortech.2011.04.032.

    Article  CAS  Google Scholar 

  • Lin, S. J., Wen, C. Y., Liau, J. C., & Chu, W. S. (2001). Screening and production of erythritol by newly isolated osmophilic yeast-like fungi. Process Biochemistry, 36, 1249–1258. DOI: 10.1016/s0032-9592(01)00169-8.

    Article  CAS  Google Scholar 

  • Lin, S. J., Wen, C. Y., Wang, P. M., Huang, J. C., Wei, C. L., Chang, Chu, W. S. (2010). High-level production of erythritol by mutants of osmophilic Moniliella sp. Process Biochemistry, 45, 973–979. DOI: 10.1016/j.procbio.2010.03. 003.

    Article  CAS  Google Scholar 

  • Liu, X. Y., Chi, Z., Liu, G. L., Wang, F., Madzak, C., & Chi, Z. M. (2010). Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 12, 469–476. DOI: 10.1016/j.ymben.2010.04.004.

    Article  CAS  Google Scholar 

  • Liu, X. Y., Chi, Z., Liu, G. L., Madzak, C., & Chi, Z. M. (2013). Both decrease in ALC1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Marine Biotechnology, 15, 26–36. DOI: 10.1007/s10126- 012-9452-5.

    Article  CAS  Google Scholar 

  • Mauersberger, S., Wang, H. J., Gaillardin, C., Barth, G., & Nicaud, J. M. (2001). Insertional mutagenesis in the nalkane- assimilating yeast Yarrowia lipolytica: Generation of tagged mutations in genes involved in hydrophobic substrate utilization. Journal of Bacteriology, 183, 5102–5109. DOI: 10.1128/jb.183.17.5102-5109.2001.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  • Pagliaro, M., & Rossi, M. (2008). The future of glycerol: New usages for a versatile raw material (RSC green chemistry series, Book 1). Cambridge, UK: The Royal Society of Chemistry. DOI: 10.1039/9781847558305.

    Google Scholar 

  • Rymowicz, W., Rywin´ska, A., Z˙ arowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60, 391–394. DOI: 10.2478/s11696-006-0071-3.

    Article  CAS  Google Scholar 

  • Rymowicz, W., Rywi´nska, A., & Marcinkiewicz, M. (2009). High-yield production of erythritol from raw glycerol in fedbatch cultures of Yarrowia lipolytica. Biotechnology Letters, 31, 377–380. DOI: 10.1007/s10529-008-9884-1.

    Article  CAS  Google Scholar 

  • Rywi´nska, A., Skrzypi´nski, A., Juszczyk, P., Boruczkowski, T., & Rymowicz, W. (2008). Characteristics of citric acid and some polyols biosynthesis from glycerol and glucose by Yarrowia lipolytica yeast. Acta Scientiarum Polonorum, Biotechnologia, 7, 27–38. (in Polish)

    Google Scholar 

  • Rywin´ska, A., Rymowicz, W., Z˙ arowska, B., & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technology and Biotechnology, 47, 1–6.

    Google Scholar 

  • Rywi´nska, A., Juszczyk, P., Wojtatowicz, M., Robak, M., Lazar, Z., Tomaszewska, L., & Rymowicz, W. (2013a). Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass and Bioenergy, 48, 148–166. DOI: 10.1016/j.biombioe.2012.11.021.

    Article  Google Scholar 

  • Rywi´nska, A., Tomaszewska, L., & Rymowicz, W. (2013b). Erythritol biosynthesis by Yarrowia lipolytica yeast under various culture conditions. African Journal of Microbiology Research, 7, 3511–3516. DOI: 10.5897/ajmr12.2272.

    Google Scholar 

  • Schmid-Berger, N., Schmid, B., & Barth, G. (1994). Ylt1, a highly repetitive retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica. Journal of Bacteriology, 2477–2482.

  • Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., & Kondo, A. (2004). Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Applied and Environmental Microbiology, 70, 5037–5040. DOI: 10.1128/aem.70.8.5037- 5040.2004.

    Article  CAS  Google Scholar 

  • Tomaszewska, L., Rywi´nska, A., & G´ladkowski, W. (2012). Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. Journal of Industrial Microbioliology & Biotechnology, 39, 1333–1343. DOI: 10.1007/s10295-012-1145-6.

    Article  CAS  Google Scholar 

  • Tomaszewska, L., Rakicka, M., Rymowicz, W., & Rywi´nska, A. (2014). A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Research, 14, 966–976. DOI: 10.1111/1567- 1364.12184.

    Article  CAS  Google Scholar 

  • Tréton, B., Le Dall, M. T., & Heslot, H. (1978). Excretion of citric and isocitric acids by the yeast Saccharomycopsis lipolytica. European Journal of Applied Microbiology and Biotechnology, 6, 67–77. DOI: 10.1007/bf00500857.

    Article  Google Scholar 

  • Xuan, J. W., Fournier, P., Declerck, N., Chasles, M., & Gaillardin, C. (1990). Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica. Molecular and Cellular Biology, 10, 4795–4806. DOI: 10.1128/mcb.10.9.4795.

    Article  CAS  Google Scholar 

  • Yang, L. B., Zhan, X. B., Zheng, Z. Y., Wu, J. R., Gao, M. J., & Lin, C. C. (2014). A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresource Technology, 151, 120–127. DOI: 10.1016/j.biortech.2013.10.031.

    Article  CAS  Google Scholar 

  • Yu, J. H., Lee, D. H., Oh, Y. J., Han, K. C., Ryu, Y. W., & Seo, J. H. (2006). Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Applied Biochemistry and Biotechnology, 131, 870–879. DOI: 10.1385/abab:131:1:870.

    Article  Google Scholar 

  • Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulincontaining materials. Metabolic Engineering, 12, 510–517. DOI: 10.1016/j.ymben.2010.09.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Rakicka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakicka, M., Lazar, Z., Rywińska, A. et al. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase. Chem. Pap. 70, 1452–1459 (2016). https://doi.org/10.1515/chempap-2016-0085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0085

Keywords

Navigation