Chemical Papers

, Volume 70, Issue 11, pp 1439–1444 | Cite as

3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications

  • Marta Soltesova-Prnova
  • Ivana Milackova
  • Milan Stefek
Original Paper


The novel derivative of quercetin 3′-O-(3-chloropivaloyl)quercetin (CPQ) inhibited a-glucosidase in a non-competitive manner with an efficacy exceeding that of the parent quercetin. In addition, it inhibited aldose reductase isolated from rat lenses with an IC50 in the low micromolar range and attenuated sorbitol accumulation in isolated rat eye lenses with an activity comparable with that of quercetin. Moreover, it scavenged stable free-radicals of DPPH more efficiently than did quercetin. By inhibiting α-glucosidase and affecting both the polyol pathway and oxidative stress, CPQ represents a promising agent for the multi-targeted pharmacology of diabetic complications.


3′-O-(3-chloropivaloyl)quercetin α-glucosidase inhibitor aldose reductase inhibitor antioxidant diabetic complications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexiou, P., Pegklidou, K., Chatzopoulou, M., Nicolaou, I., & Demopoulos, V. J. (2009). Aldose reductase enzyme and its implication to major health problems of the 21st century. Current Medicinal Chemistry, 16, 734–752. DOI: 10.2174/092986709787458362.CrossRefGoogle Scholar
  2. Amic, D., Davidovic-Amic, D., Beslo, D., Rastija, V., Lucic, B., & Trinajstic, N. (2007). SAR and QSAR of the antioxidant activity of flavonoids. Current Medicinal Chemistry, 14, 827–845. DOI: 10.2174/092986707780090954.CrossRefGoogle Scholar
  3. Blois, M. S. (1958).. Nature, 181, 1199–1200. DOI: 10.1038/1811199a0.CrossRefGoogle Scholar
  4. Boots, A. W., Haenen, G. R. M. M., & Bast, A. (2008). Health effects of quercetin: From antioxidant to nuhaceutical. European Journal of Pharmacology, 585, 325–337. DOI: 10.1016/j.ejphar.2008.03.008.CrossRefGoogle Scholar
  5. Bors, W., & Michel, C. (2002). Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences, 957, 57–69. DOI: 10.1111/j.1749-6632.2002.tb02905.x.CrossRefGoogle Scholar
  6. Butkovi´c, V., Klasinc, L., & Bors, W. (2004). Kinetic study of flavonoid reactions with stable radicals. Journal of Agricultural and Food Chemistry, 52, 2816–2820. DOI: 10.1021/jf049880h.CrossRefGoogle Scholar
  7. Cao, H., & Chen, X. Q. (2012). Structures required of flavonoids for inhibiting digestive enzymes. Anti-Cancer Agents in Medicinal Chemistry, 12, 929–939. DOI: 10.2174/187152012 802650110.CrossRefGoogle Scholar
  8. Chatzopoulou, M., Alexiou, P., Kotsampasakou, E., & Demopoulos, V. J. (2012). Novel aldose reductase inhibitors: A patent survey (2006–present). Expert Opinion on Therapeutic Patents, 11, 1303–1323. DOI: 10.1517/13543776.2012.72 6615.CrossRefGoogle Scholar
  9. Chatzopoulou, M., Pegklidou, K., Papastavrou, N., & Demopoulos, V. J. (2013). Development of aldose reductase inhibitors for the treatment of inflammatory disorders. Expert Opinion on Drug Discovery, 8, 1365–1380. DOI: 10.1517/17460441.2013.843524.CrossRefGoogle Scholar
  10. Chen, J., Mangelinckx, S., Adams, A., Wang, Z. T., Li, W. L., & De Kimpe, N. (2015). Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Natural Product Communications, 10, 187–200.Google Scholar
  11. Goupy, P., Dufour, C., Loonis, M., & Dangles, O. (2003). Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. Journal of Agricultural and Food Chemistry, 51, 615–622. DOI: 10.1021/jf025938l.CrossRefGoogle Scholar
  12. Hakamata, W., Kurihara, M., Okuda, H., Nishio, T., & Oku, T. (2009). Design and screening strategies for α- glucosidase inhibitors based on enzymological information. Current Topics in Medicinal Chemistry, 9, 3–12. DOI: 10.2174/156802609787354306.CrossRefGoogle Scholar
  13. Hayman, S., & Kinoshita, J. H. (1965). Isolation and properties of lens aldose reductase. The Journal of Biological Chemistry, 240, 877–882.Google Scholar
  14. Kelsey, N. A., Wilkins, H. M., & Linseman, D. A. (2010). Nutraceutical antioxidants as novel neuroprotective agents. Molecules, 15,. DOI: 10.3390/molecules15117792.Google Scholar
  15. Kuniaková, M., Mrvová, N., Knezl, V., & Račková, Ľ. (2015). Effect of novel quercetin pivaloyl ester on functions of adult rat microglia. Biologia, 70, 690–702. DOI: 10.1515/biolog- 2015-0082.CrossRefGoogle Scholar
  16. Kwon, Y. I., Vattem, D. A., & Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15, 107–118.Google Scholar
  17. Majumdar, S., & Srirangam, R. (2010). Potential of the bioflavonoids in the prevention/treatment of ocular disorders. Journal of Pharmacy and Pharmacology, 62, 951–965. DOI: 10.1211/jpp.62.08.0001.CrossRefGoogle Scholar
  18. Matsuda, H., Morikawa, T., Toguchida, I., & Yoshikawa, M. (2002). Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chemical & Pharmaceutical Bulletin, 50, 788–795. DOI: 10.1248/cpb.50.788.CrossRefGoogle Scholar
  19. Matsuda, H., Wang, T., Managi, H., & Yoshikawa, M. (2003). Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorganic & Medicinal Chemistry, 11, 5317–5323. DOI: 10.1016/j.bmc. 2003.09.045.CrossRefGoogle Scholar
  20. Miyamoto, S. (2002). Recent advances in aldose reductase inhibitors: Potential agents for the treatment of diabetic complications. Expert Opinion on Therapeutic Patents, 12, 621–631. DOI: 10.1517/13543776.12.5.621.CrossRefGoogle Scholar
  21. Milackova, I., Kovacikova, L., Veverka, M., Gallovic, E., & Stefek, M. (2013). Screening for antiradical efficiency of 21 semisynthetic derivatives of quercetin in a DPPH assay. Interdisciplinary Toxicology, 6, 13–17. DOI: 10.2478/intox-2013- 0003.CrossRefGoogle Scholar
  22. Milackova, I., Soltesova Prnova, M., Majekova, M., Sotnikova, R., Stasko, M., Kovacikova, L., Banerjee, S., Veverka, M., & Stefek, M. (2015). 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 107–113. DOI: 10.3109/14756366. 2014.892935.CrossRefGoogle Scholar
  23. Mrvová, N., Škandík, M., Kuniaková, M., & Račková, L. (2015). Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochemistry International, 90, 246–254. DOI: 10.1016/j.neuint.2015.09.005.CrossRefGoogle Scholar
  24. Mylari, B. L., Armento, S. J., Beebe, D. A., Conn, E. L., Coutcher, J. B., Dina, M. S., O’Gorman, M. T., Linhares, M. C., Martin, W. H., Oates, P. J., Tess, D. A., Withbroe, G. J., & Zembrowski, W. J. (2003). A highly selective, nonhydantoin, non-carboxylic acid inhibitor of aldose reductase with potent oral activity in diabetic rat models: 6-(5-Chloro-3-methylbenzofuran-2-sulfonyl)-2-H-pyridazin-3-one. Jour- -nal of Medicinal Chemistry, 46, 2283–2286. DOI: 10.1021/jm034065z.CrossRefGoogle Scholar
  25. Nijveldt, R. J., van Nood, E., van Hoorn, D. E. C., Boelens, P. G., van Norren, K., & van Leeuwen, P. A. M. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition, 74, 418–425.Google Scholar
  26. Park, Hwang, K. Y., Oh, K. H., Kim, Y. H., Lee, J. Y., & Kim, K. (2008). Discovery of novel alpha-glucosidase inhibitors based on the virtual screening with the homologymodeled protein structure. Bioorganic & Medicinal Chemistry, 16, 284–292. DOI: 10.1016/j.bmc.2007.09.036.CrossRefGoogle Scholar
  27. Ratty, A. K., Sunamoto, J., & Das, N. P. (1988). Interaction of flavonoids with 1,1-diphenyl-2-picrylhydrazyl free radical, liposomal membranes and soybean lipoxygenase-1. Biochemical Pharmacology, 37, 989–996. DOI: 10.1016/0006- 2952(88)90499-6.CrossRefGoogle Scholar
  28. Singh, R., Kaur, N., Kishore, L., & Gupta, G. K. (2013). Management of diabetic complications: A chemical constituents based approach. Journal of Ethnopharmacology, 150, 51–70. DOI: 10.1016/j.jep.2013.08.051.CrossRefGoogle Scholar
  29. Srivastava, S. K., Ramana, K. V., & Bhatnagar, A. (2005). Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocrine Reviews, 26,. DOI: 10.1210/er.2004-0028.Google Scholar
  30. Stefek, M., Snirc, V., Djoubissie, Majekova, M., Demopoulos, V., Račková, Ľ., Bezakova, Z., Karasu, C., Carbone, V., & El-Kabbani, O. (2008). Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning and molecular modelling. Bioorganic & Medicinal Chemistry, 16,. DOI: 10.1016/j.bmc.2008.03.039.Google Scholar
  31. Stefek, M. (2011). Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract. Interdisciplinary Toxicology, 4, 69–77. DOI: 10.2478/v10102-011-0013- y.CrossRefGoogle Scholar
  32. Stefek, M., Tsantili-Kakoulidou, A., Milackova, I., Juskova, M., Snirc, V., & Triantos, N. (2011). (2-Benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-8-yl)-acetic acid: An aldose reductase inhibitor and antioxidant of zwitterionic nature. Bioorganic & Medicinal Chemistry, 19, 7181–7185. DOI: 10.1016/j.bmc.2011.09.053.CrossRefGoogle Scholar
  33. Veverka, M., Gallovič, J., Švajdlenka, E., Veverková, E., Prónayová, N., Miláčková, I., & Štefek, M. (2013). Novel quercetin derivatives: Synthesis and screening for antioxidant activity and aldose reductase inhibition. Chemical Papers, 67, 76–83. DOI: 10.2478/s11696-012-0240-5.CrossRefGoogle Scholar
  34. Villa˜no, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M., & García-Parrilla, M. C. (2007). Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 71, 230–235. DOI: 10.1016/j.talanta.2006.03. 050.CrossRefGoogle Scholar
  35. Williams, R. J., Spencer, J. P. E., & Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biology & Medicine, 36, 838–849. DOI: 10.1016/j. freeradbiomed.2004.01.001.CrossRefGoogle Scholar
  36. Xiao, Kai, G. Y., Yamamoto, K., & Chen, X. Q. (2013). Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure–activity relationship aspect. Critical Reviews in Food Science and Nutrition, 53, 818–836. DOI: 10.1080/10408398.2011.561379.CrossRefGoogle Scholar
  37. Yabe-Nishimura, C. (1998). Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacological Reviews, 1, 50, 21–33.Google Scholar
  38. ˇZižková, P., Blaškovič, D., Májeková, M., Švorc, L., Račková, L., Ratkovská, Ľ., Veverka, M., & Horáková, Ľ. (2014). Novel quercetin derivatives in treatment of peroxynitrite-oxidized SERCA1. Molecular and Cellular Biochemistry, 386, 1–14. DOI: 10.1007/s11010-013-1839-8.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Marta Soltesova-Prnova
    • 1
  • Ivana Milackova
    • 2
  • Milan Stefek
    • 1
  1. 1.Institute of Experimental Pharmacology and ToxicologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia

Personalised recommendations