Skip to main content
Log in

Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Alumina-supported potassium (K/Al2O3) catalysts using pseudo-boehmite as the precursor were prepared by the impregnation/calcination method, characterised by XRD, SEM, ICP, N2 adsorption/desorption, CO2-TPD methods and TG analysis, and applied to the vapour-phase condensation of methyl propionate with trioxane to produce methyl methacrylate. The results showed the catalysts’ properties to be mainly affected by the calcined temperature (TC) and the crystal structure. The sample calcined at 1100°C exhibited the highest catalytic activity when mixed phases were formed and provided the appropriate specific surface area (SBET) and surface basic properties. The effects of TC, K-loading and reaction conditions on the catalytic performance were also investigated in a fixed-bed reactor. The yield of methyl methacrylate attained 29.2 % under the optimised conditions, and the deactivated catalyst could be completely regenerated by calcination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, M. (1990a). Reaction of methyl propionate with methylal over V–Si–P ternary oxide catalysts. Bulletin of the Chemical Society of Japan, 63, 3722–3724. DOI: 10.1246/bcsj.63.3722.

    Article  CAS  Google Scholar 

  • Ai, M. (1990b). Reaction of propionic acid with methylal over vanadium–silicon–phosphorus oxide. Applied Catalysis, 63, 365–373. DOI: 10.1016/s0166-9834(00)81725-x.

    Article  CAS  Google Scholar 

  • Ai, M., Fujihashi, H., Hosoi, S., & Yoshida, A. (2003). Production of methacrylic acid by vapor-phase aldol condensation of propionic acid with formaldehyde over silica-supported metal phosphate catalysts. Applied Catalysis A: General, 252, 185–191. DOI: 10.1016/s0926-860x(03)00449-6.

    Article  CAS  Google Scholar 

  • Ai, M. (2005). Formation of methyl methacrylate by condensation of methyl propionate with formaldehyde over silicasupported cesium hydroxide catalysts. Applied Catalysis A: General, 288, 211–215. DOI: 10.1016/j.apcata.2005.04.027.

    Article  CAS  Google Scholar 

  • Albanesi, G., & Moggi, P. (1983). Methyl methacrylate by gas phase catalytic condensation of formaldehyde with methyl propionate. Applied Catalysis, 6, 293–306. DOI: 10.1016/0166-9834(83)80102-x.

    Article  CAS  Google Scholar 

  • Amini, G., Najafpour, G. D., Rabiee, S. M., & Ghoreyshi, A. A. (2013). Synthesis and characterization of amorphous nanoalumina powders with high surface area for biodiesel production. Chemical Engineering & Technology, 36, 1708–1712. DOI: 10.1002/ceat.201300102.

    CAS  Google Scholar 

  • Chang, C. D., & Silvestri, A. J. (1977). The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 47, 249–259. DOI: 10.1016/0021-9517(77)90172-5.

    Article  CAS  Google Scholar 

  • Gaenzler, W., Kabs, K., & Schroeder, G. (1979). U.S. Patent No. 4147718 (a). Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Gogate, M. R., Spivey, J. J., & Zoeller, J. R. (1997). Synthesis of methyl methacrylate by vapor phase condensation of formaldehyde with propionate derivatives. Catalysis Today, 36, 243–254. DOI: 10.1016/s0920-5861(96)00241-6.

    Article  CAS  Google Scholar 

  • Hidai, M., Koyasu, Y., Chikanari, K., & Uchida, Y. (1987). Synthesis of ketones and esters from olefins, carbon monoxide and alcohols by using ruthenium–iodide catalysts. Journal of Molecular Catalysis, 40, 243–254. DOI: 10.1016/0304- 5102(87)80041-x.

    Article  CAS  Google Scholar 

  • Hong, T. L., Liu, H. T., Yeh, C. T., Chen, S. H., Sheu, F. C., Leu, L. J., & Wang, C. I. (1997). Electron microscopic studies on pore structure of alumina. Applied Catalysis A: General, 158, 257–271. DOI: 10.1016/s0926-860x(97)00002-1.

    Article  CAS  Google Scholar 

  • Isahak, W. N. R. W., Ismail, M., Jahim, J. M., Salimon, J., & Yarmo, M. A. (2012). Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil. Chemical Papers, 66, 178–187. DOI: 10.2478/s11696-011-0125-z.

    Article  CAS  Google Scholar 

  • Islam, A., Taufiq-Yap, Y. H., Chu, C. M., Ravindra, P., & Chan, E. S. (2013). Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric γ-Al2O3. Renewable Energy, 59, 23–29. DOI: 10.1016/j.renene.2013.01.051.

    Article  CAS  Google Scholar 

  • Kirszensztejn, P., Przekop, R., Toli´nska, A., & Ma´ckowska, E. (2009). Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts. Chemical Papers, 63, 226–232. DOI: 10.2478/s11696-008-0104-1.

    Article  CAS  Google Scholar 

  • Li, B., Yan, R., Wang, L., Diao, Y., Li, Z., & Zhang, S. (2013). Synthesis of methyl methacrylate by aldol condensation of methyl propionate with formaldehyde over acid–base bifunctional catalysts. Catalysis Letters, 143, 829–838. DOI: 10.1007/s10562-013-1040-4.

    Article  CAS  Google Scholar 

  • Li, B., Yan, R., Wang, L., Diao, Y., Li, Z., & Zhang, S. (2014). SBA-15 supported cesium catalyst for methyl methacrylate synthesis via condensation of methyl propionate with formaldehyde. Industrial & Engineering Chemistry Research, 53, 1386–1394. DOI: 10.1021/ie403422s.

    Article  CAS  Google Scholar 

  • Maldonado, A., M., Essayem, N., Christ, L., & Figueras, F. (2013). Transesterification of acrylates by heterogeneous basic catalysis. Applied Catalysis A: General, 468, 1–8. DOI: 10.1016/j.apcata.2013.08.001.

    Article  Google Scholar 

  • Moroz, ´E. M., Shefer, K. I., Zyuzin, D. A., & Shmakov, A. N. (2011). A study of the local structure of aluminas obtained by different methods. Journal of Structural Chemistry, 52, 326–329. DOI: 10.1134/s0022476611020120.

    Article  CAS  Google Scholar 

  • Nagai, K. (2001). New developments in the production of methyl methacrylate. Applied Catalysis A: General, 221,. DOI: 10.1016/s0926-860x(01)00810-9.

  • Palekar, V. M., Jung, H., Tierney, J. W., & Wender, I. (1993). Slurry phase synthesis of methanol with a potassium methoxide/ copper chromite catalytic system. Applied Catalysis A: General, 102, 13–34. DOI: 10.1016/0926-860x(93)85152-f.

    Article  CAS  Google Scholar 

  • Sandesh, S., Shanbhag, G. V., & Halgeri, A. B. (2013). Transesterification of glycerol to glycerol carbonate using KF/Al2O3 catalyst: The role of support and basicity. Catalysis Letters, 143, 1226–1234. DOI: 10.1007/s10562-013-1043-1.

    Article  CAS  Google Scholar 

  • Stefanov, P., Todorova, S., Naydenov, A., Tzaneva, B., Kolev, H., Atanasova, G., Stoyanova, D., Karakirova, Y., & Aleksieva, K. (2015). On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane. Chemical Engineering Journal, 266, 329–338. DOI: 10.1016/j.cej.2014.12.099.

    Article  CAS  Google Scholar 

  • Tai, J., & Davis, R. J. (2007). Synthesis of methacrylic acid by aldol condensation of propionic acid with formaldehyde over acid–base bifunctional catalysts. Catalysis Today, 123, 42–49. DOI: 10.1016/j.cattod.2007.02.004.

    Article  CAS  Google Scholar 

  • Travalloni, L., Gomes, A. C. L., Gaspar, A. B., & da Silva, M. A. P. (2008). Methanol conversion over acid solid catalysts. Catalysis Today, 133–135, 406–412. DOI: 10.1016/j.cattod.2007.12.060.

    Article  Google Scholar 

  • Wang, B., Ran, W., Sun, W., & Wang, K. (2012). Direct oxidative esterification of aldehyde with alcohol to ester over Pd/styrene-divinyl benzene copolymer catalyst. Industrial & Engineering Chemistry Research, 51, 3932–3938. DOI: 10.1021/ie202701k.

    Article  CAS  Google Scholar 

  • Yang, Y., Jiao, X., Chen, B., & Chen, D. (2013). Preparation of fine-grained α-alumina powder from seeded boehmite. Journal of Nanoparticle Research, 15, 1855–1863. DOI: 10.1007/s11051-013-1855-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yang He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WY., Chen, Y., Feng, YF. et al. Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst. Chem. Pap. 70, 1471–1478 (2016). https://doi.org/10.1515/chempap-2016-0076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0076

Keywords

Navigation