Advertisement

Chemical Papers

, Volume 70, Issue 10, pp 1370–1379 | Cite as

Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion

  • Yan-Hua Zhang
  • Hai-Long Zhang
  • Yi Cao
  • Yi Yang
  • Bao-Qiang Xu
  • Ming Zhao
  • Mao-Chu Gong
  • Hai-Di Xu
  • Yao-Qiang Chen
Original Paper

Abstract

A series of Co-modified Ce0.5Zr0.5O2 catalysts with different concentrations of Co (mass %: 0, 2, 4, 6, 8, 10) was investigated for diesel soot combustion. Ce0.5Zr0.5O2 was prepared using the coprecipitation method and Co was loaded onto the oxide using the incipient wetness impregnation method. The activities of the catalysts were evaluated by thermogravimetric (TG) analysis and temperature-programmed oxidation (TPO) experiments. The results showed the soot combustion activities of the catalysts to be effectively improved by the addition of Co, 6 % Co/Ce0.5Zr0.5O2 and that the 8 % Co/Ce0.5Zr0.5O2 catalysts exhibited the best catalytic performance in terms of lower soot ignition temperature (Ti at 349°C) and maximal soot oxidation rate temperature (Tm at 358°C). The reasons for the improved activity were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These results revealed that the presence of Co could lower the reduction temperature due to the synergistic effect between Co and Ce, thereby improving the activity of the catalysts in soot combustion. The 6 % Co catalyst exhibited the best catalytic performance, which could be attributed to the greater amounts of Co3+ and surface oxygen species on the catalyst.

Keywords

Co3O4 Ce0.5Zr0.5O2 catalytic performance diesel soot combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2016_700101370_MOESM1_ESM.docx (889 kb)
Supplementary material, approximately 910 KB.

References

  1. Alinezhadchamazketi, A., Khodadadi, A. A., Mortazavi, Y., & Nemati, A. (2013). Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation. Journal of Environmental Sciences, 25, 2498–2506. DOI: 10.1016/s1001-0742(12)60334-9.CrossRefGoogle Scholar
  2. Aneggi, E., de Leitenburg, C., Llorca, J., & Trovarelli, A. (2012). Higher activity of Diesel soot oxidation over polycrystalline ceria and ceria–zirconia solid solutions from more reactive surface planes. Catalysis Today, 197, 119–126. DOI: 10.1016/j.cattod.2012.07.030.CrossRefGoogle Scholar
  3. Atribak, I., Bueno-López, A., García-García, A., & Azambre, B. (2010). Contributions of surface and bulk heterogeneities to the NO oxidation activities of ceria–zirconia catalysts with composition Ce0.76Zr0.24O2 prepared by different methods. Physical Chemistry Chemical Physics, 12, 13770–13779. DOI: 10.1039/c0cp00540a.CrossRefGoogle Scholar
  4. Atribak, I., López-Suárez, F. E., Bueno-López, A., & García-García, A. (2011). New insights into the performance of ceria–zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen” production. Catalysis Today, 176, 404–408. DOI: 10.1016/j.cattod.2010. 11.023.CrossRefGoogle Scholar
  5. Bueno-López, A. (2014). Diesel soot combustion ceria catalysts. Applied Catalysis B: Environmental, 146, 1–11. DOI: 10.1016/j.apcatb.2013.02.033.CrossRefGoogle Scholar
  6. Chiou, J. Y. Z., Lai, C. L., Yu, S. W., Huang, H. H., Chuang, C. L., & Wang, C. B. (2014). Effect of Co, Fe and Rh addition on coke deposition over Ni/Ce0.5Zr0.5O2 catalysts for steam reforming of ethanol. International Journal of Hydrogen Energy, 39, 20689–20699. DOI: 10.1016/j.ijhydene.2014.07.141.CrossRefGoogle Scholar
  7. Dai, F., Meng, M., Zha, Y., Li, Z., Hu, T., Xie, Y., & Zhang, J. (2012). Performance of Ce substituted hydrotalcite-derived mixed oxide catalysts Co2.5Mg0.5Al1−x%Cex%O used for soot combustion and simultaneous NOx-soot removal. Fuel Processing Technology, 104, 43–49. DOI: 10.1016/j.fuproc. 2012.07.002.CrossRefGoogle Scholar
  8. Giménez-Ma˜nogil, J., Bueno-López, A., & García-García, A. (2014). Preparation, characterisation and testing of CuO/Ce0.8Zr0.2O2 catalysts for NO oxidation to NO2 and mild temperature diesel soot combustion. Applied Catalysis B: Environmental, 152–153, 99–107. DOI: 10.1016/j.apcatb. 2014.01.018.CrossRefGoogle Scholar
  9. Gómez, D. M., Galvita, V. V., Gatica, J. M., Vidal, H., & Marin, G. B. (2014). TAP study of toluene total oxidation over a Co3O4/La-CeO2 catalyst with an application as a washcoat of cordierite honeycomb monoliths. Physical Chemistry Chemical Physics, 16, 11447–11455. DOI: 10.1039/c4cp00886c.CrossRefGoogle Scholar
  10. Guillén-Hurtado, N., García-García, A., & Bueno-López, A. (2015). Active oxygen by Ce–Pr mixed oxide nanoparticles outperform diesel soot combustion Pt catalysts. Applied Catalysis B: Environmental, 174–175, 60–66. DOI: 10.1016/j.apcatb.2015.02.036.CrossRefGoogle Scholar
  11. Guo, X., Meng, M., Dai, F., Li, Q., Zhang, Z., Jiang, Z., Zhang, S., & Huang, Y. (2013). NOx-assisted soot combustion over dually substituted perovskite catalysts La1−xKxCo1−yPdyO3−δ. Applied Catalysis B: Environmental, 142–143, 278–289. DOI: 10.1016/j.apcatb.2013.05. 036.CrossRefGoogle Scholar
  12. He, H., Dai, H. X., & Au, C. T. (2004). Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catalysis Today, 90, 245–254. DOI: 10.1016/j.cattod.2004.04.033.CrossRefGoogle Scholar
  13. Hernández-Giménez, A. M., Castelló, D. L., & Bueno-López, A. (2014). Diesel soot combustion catalysts: review of active phases. Chemical Papers, 68, 1154–1168. DOI: 10.2478/ s11696-013-0469-7.CrossRefGoogle Scholar
  14. Johnson, T. (2012). Vehicular emissions in review. SAE International Journal of Engines, 5, 216–234. DOI: 10.4271/2012-01-0368.CrossRefGoogle Scholar
  15. Johnson, T. (2013). Vehicular emissions in review. SAE International Journal of Engines, 6, 699–715. DOI: 10.4271/2013-01-0538.CrossRefGoogle Scholar
  16. Katta, L., Sudarsanam, P., Thrimurthulu, G., & Reddy, B. M. (2010). Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters. Applied Catalysis B: Environmental, 101, 101–108. DOI: 10.1016/j.apcatb.2010.09.012.CrossRefGoogle Scholar
  17. Kumar, P. A., Tanwar, M. D., Russo, N., Pirone, R., & Fino, D. (2012). Synthesis and catalytic properties of CeO2 and Co/CeO2 nanofibres for diesel soot combustion. Catalysis Today, 184, 279–287. DOI: 10.1016/j.cattod.2011.12.025.CrossRefGoogle Scholar
  18. Liang, Q., Wu, X., Weng, D., & Xu, H. (2008). Oxygen activation on Cu/Mn–Ce mixed oxides and the role in diesel soot oxidation. Catalysis Today, 139, 113–118. DOI: 10.1016/j.cattod.2008.08.013.CrossRefGoogle Scholar
  19. Liotta, L. F., Di Carlo, G., Pantaleo, G., Venezia, A. M., & Deganello, G. (2006). Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity. Applied Catalysis B: Environmental, 66, 217–227. DOI: 10.1016/j.apcatb.2006.03. 018.CrossRefGoogle Scholar
  20. Liotta, L. F., Di Carlo, G., Pantaleo, G., & Deganello, G. (2007). Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Applied Catalysis B: Environmental, 70, 314–322. DOI: 10.1016/j.apcatb.2005.12.023.CrossRefGoogle Scholar
  21. Liu, J., Zhao, Z., Wang, J., Xu, C., Duan, A., Jiang, G., & Yang, Q. (2008). The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Applied Catalysis B: Environmental, 84, 185–195. DOI: 10.1016/j.apcatb.2008.03.017.CrossRefGoogle Scholar
  22. Luo, J. Y., Meng, M., Li, X., Li, X. G., Zha, Y. Q., Hu, T. D., Xie, Y. N., & Zhang, J. (2008). Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for lowtemperature CO oxidation. Journal of Catalysis, 254, 310–324. DOI: 10.1016/j.jcat.2008.01.007.CrossRefGoogle Scholar
  23. Martínez, T. L. M., Araque, M., Centeno, M. A., & Roger, A. C. (2015). Role of ruthenium on the catalytic properties of CeZr and CeZrCo mixed oxides for glycerol steam reforming reaction toward H2 production. Catalysis Today, 242, 80–90. DOI: 10.1016/j.cattod.2014.07.034.CrossRefGoogle Scholar
  24. Megarajan, S. K., Rayalu, S., Teraoka, Y., & Labhsetwar, N. (2014). High NO oxidation catalytic activity on non-noble metal based cobalt-ceria catalyst for diesel soot oxidation. Journal of Molecular Catalysis A: Chemical, 385, 112–118. DOI: 10.1016/j.molcata.2014.01.026.CrossRefGoogle Scholar
  25. Muroyama, H., Asajima, H., Hano, S., Matsui, T., & Eguchi, K. (2015). Effect of an additive in a CeO2-based oxide on catalytic soot combustion. Applied Catalysis A: General, 489, 235–240. DOI: 10.1016/j.apcata.2014.10.039.CrossRefGoogle Scholar
  26. Nelson, A. E., & Schulz, K. H. (2003). Surface chemistry and microstructural analysis of CexZr1−xO2−y model catalyst surfaces. Applied Surface Science, 210, 206–221. DOI: 10.1016/s0169-4332(3)00157-0.CrossRefGoogle Scholar
  27. Obeid, E., Lizarraga, L., Tsampas, M. N., Cordier, A., Boréave, A., Steil, M. C., Blanchard, G., Pajot, K., & Vernoux, P. (2014). Continuously regenerating Diesel Particulate Filters based on ionically conducting ceramics. Journal of Catalysis, 309, 87–96. DOI: 10.1016/j.jcat.2013.09.004.CrossRefGoogle Scholar
  28. Oliveira, C. F., Garcia, F. A. C., Araújo, D. R., Macedo, J. L., Dias, S. C. L., & Dias, J. A. (2012). Effects of preparation and structure of cerium-zirconium mixed oxides on diesel soot catalytic combustion. Applied Catalysis A: General, 413–414, 292–300. DOI: 10.1016/j.apcata.2011.11.020.CrossRefGoogle Scholar
  29. Peralta, M. A., Milt, V. G., Cornaglia, L. M., & Querini, C. A. (2006). Stability of Ba,K/CeO2 catalyst during diesel soot combustion: Effect of temperature, water, and sulfur dioxide. Journal of Catalysis, 242, 118–130. DOI: 10.1016/j.jcat.2006.05.025.CrossRefGoogle Scholar
  30. Reddy, B. M., & Rao, K. N. (2009). Copper promoted ceria–zirconia based bimetallic catalysts for low temperature soot oxidation. Catalysis Communications, 10, 1350–1353. DOI: 10.1016/j.catcom.2009.02.020.CrossRefGoogle Scholar
  31. Shang, D., Zhong, Q., & Cai, W. (2015). Influence of the preparation method on the catalytic activity of Co/Zr1−xCexO2 for NO oxidation. Journal of Molecular Catalysis A: Chemical, 399, 18–24. DOI: 10.1016/j.molcata.2015.01.015.CrossRefGoogle Scholar
  32. Shen, Q., Lu, G., Du, C., Guo, Y., Wang, Y., Guo, Y., & Gong, X. (2013). Role and reduction of NOx in the catalytic combustion of soot over iron–ceria mixed oxide catalyst. Chemical Engineering Journal, 218, 164–172. DOI: 10.1016/j.cej.2012.12.010.CrossRefGoogle Scholar
  33. Sudarsanam, P., Mallesham, B., Reddy, P. S., Großmann, D., Gr¨unert, W., & Reddy, B. M. (2014a). Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Applied Catalysis B: Environmental, 144, 900–908. DOI: 10.1016/j.apcatb.2013.08.035.CrossRefGoogle Scholar
  34. Sudarsanam, P., Selvakannan, P. R., Soni, S. K., Bhargava, S. K., & Reddy, B. M. (2014b). Structural evaluation and catalytic performance of nano-Au supported on nanocrystalline Ce0.9Fe0.1O2−δ solid solution for oxidation of carbon monoxide and benzylamine. RSC Advances, 4, 43460–43469. DOI: 10.1039/c4ra07450e.CrossRefGoogle Scholar
  35. Sudarsanam, P., Amin, M. H., Reddy, B. M., Nafady, A., Al Farhan, K. A., & Bhargava, S. K. (2015a). MnOx nanoparticle-dispersed CeO2 nanocubes: A remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Applied Materials & Interfaces, 7, 16525–16535. DOI: 10.1021/acsami. 5b03988.CrossRefGoogle Scholar
  36. Sudarsanam, P., Hillary, B., Deepa, D. K., Amin, M. H., Mallesham, B., Reddy, B. M., & Bhargava, S. K. (2015b). Highly efficient cerium dioxide nanocube-based catalysts for low temperature diesel soot oxidation: the cooperative effect of cerium-and cobalt-oxides. Catalysis Science & Technology, 5, 3496–3500. DOI: 10.1039/c5cy00525f.CrossRefGoogle Scholar
  37. Wei, Y., Liu, J., Zhao, Z., Jiang, G., Duan, A., He, H., & Wang, X. (2010). Preparation and characterization of Co0.2/Ce1−xZrxO2 catalysts and their catalytic activity for soot combustion. Chinese Journal of Catalysis, 31, 283–288. DOI: 10.1016/s1872-2067(9)60050-4.CrossRefGoogle Scholar
  38. Wei, Y., Zhao, Z., Li, T., Liu, J., Duan, A., & Jiang, G. (2014). The novel catalysts of truncated polyhedron Pt nanoparticles supported on three-dimensionally ordered macroporous oxides (Mn, Fe, Co, Ni, Cu) with nanoporous walls for soot combustion. Applied Catalysis B: Environmental, 146, 57–70. DOI: 10.1016/j.apcatb.2013.03.019.CrossRefGoogle Scholar
  39. Zhang, H. L., Zhu, Y., Wang, S. D., Zhao, M., Gong, M. C., & Chen, Y.Q. (2015). Activity and thermal stability of Pt/Ce0.64Mn0.16R0.2Ox (R = Al, Zr, La, or Y) for soot and NO oxidation. Fuel Processing Technology, 137, 38–47. DOI: 10.1016/j.fuproc.2015.03.027.CrossRefGoogle Scholar
  40. Zhao, Z., Jin, R., Bao, T., Lin, X., & Wang, G. (2011). Mesoporous ceria-zirconia supported cobalt oxide catalysts for CO preferential oxidation reaction in excess H2. Applied Catalysis B: Environmental, 110, 154–163. DOI: 10.1016/j.apcatb.2011.08.038.CrossRefGoogle Scholar
  41. Zhu, L., Yu, J., & Wang, X. (2007). Oxidation treatment of diesel soot particulate on CexZr1−xO2. Journal of Hazardous Materials, 140, 205–210. DOI: 10.1016/j.jhazmat. 2006.06.055.CrossRefGoogle Scholar
  42. Zou, G., Xu, Y., Wang, S., Chen, M., & Shangguan, W. (2015). The synergistic effect in Co–Ce oxides for catalytic oxidation of diesel soot. Catalysis Science & Technology, 5, 1084–1092. DOI: 10.1039/c4cy01141d.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Yan-Hua Zhang
    • 1
  • Hai-Long Zhang
    • 2
  • Yi Cao
    • 1
  • Yi Yang
    • 1
  • Bao-Qiang Xu
    • 1
  • Ming Zhao
    • 1
  • Mao-Chu Gong
    • 1
  • Hai-Di Xu
    • 3
  • Yao-Qiang Chen
    • 1
    • 4
    • 5
  1. 1.Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of ChemistrySichuan UniversityChengduChina
  2. 2.College of Chemical EngineeringSichuan UniversityChengduChina
  3. 3.Institute of New Energy and Low-Carbon TechnologySichuan UniversityChengduChina
  4. 4.Sichuan Provincial Vehicular Exhaust Gases Abatement Engineering Technology CenterChengduChina
  5. 5.Sichuan Provincial Environmental Catalytic Material Engineering Technology CenterChengduChina

Personalised recommendations