Chemical Papers

, Volume 70, Issue 9, pp 1299–1308 | Cite as

Sorption properties of sheep wool irradiated by accelerated electron beam

  • Zuzana Hanzlíková
  • Jana Braniša
  • Peter Hybler
  • Ivana Šprinclová
  • Klaudia Jomová
  • Mária Porubská
Original Paper


Electron beam (EB) irradiated wool was examined for sorption of chromic ions. Sorption increased with the adsorbed dose non-monotonously, which is a result of the generation of S-oxidized groups, secondary structure variation, and the breaking of the keratin backbone. For a dose of 400 kGy, an increase by 120 % was observed at the cystine dioxide and cysteine acid amounts. Examining sorption of unexposed wool and that irradiated with doses of 25 kGy and 40 kGy for basic, methylene blue (MB), or acidic, pyrogallol red (PR) dyes revealed that such low doses have no effect on the carboxylic or amino groups of keratin. Sorption of MB is independent of the EB treatment and is identical for both samples due to the interaction of MB amino groups with the carboxylic groups of wool; however, the sorption capacity for PR is a function of the EB treatment. The sample irradiated with the dose of 25 kGy showed higher PR sorption than that with the EB dose of 40 kGy, which was equal to that of unexposed wool. While the 25 kGy sample provided more active sites for PR interaction compared with the unexposed one, the 40 kGy sample contained already enough active sites to generate intra- and intermolecular interactions inside wool. Thus, PR adherence to the 40 kGy sample was restricted and comparable to the level of unexposed wool.


wool electron beam sorption Cr3+ methylene blue pyrogallol red 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu, A. M., & Toffoli, S. M. (2009). Characterization of a chromium-rich tannery waste and its potential use in ceramics. Ceramics International, 35, 2225–2234. DOI: 10.1016/j.ceramint.2008.12.011.CrossRefGoogle Scholar
  2. Aluigi, A., Vineis, C., Tonin, C., Tonetti, C., Varesano, A., & Mazzuchetti, G. (2009). Wool keratin-based nanofibres for active filtration of air and water. Journal of Biobased Materials and Bioenergy, 3, 311–319. DOI: 10.1166/jbmb.2009. 1039.CrossRefGoogle Scholar
  3. Aluigi, A., Tonetti, C., Vineis, C., Tonin, C., & Mazzuchetti, G. (2011). Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. European Polymer Journal, 47, 1756–1764. DOI: 10.1016/j.eurpolymj.2011.06.009.CrossRefGoogle Scholar
  4. Arai, T., Freddi, G., Colonna, G. M., Scotti, E., Boschi, A., Murakami, R., & Tsukada, M. (2001). Absorption of metal cations by modified B. mori silk and preparation of fabrics with antimicrobial activity. Journal ofApplied Polymer Science, 80, 297–303. DOI: 10.1002/1097-4628(20010411)80:2< 297::AID-APP1099> 3.0.CO;2-Z.CrossRefGoogle Scholar
  5. Atia, A. A., Donia, A. M., & Yousif, A. M. (2003). Synthesis of amine and thiol chelating resins and study of their interaction with zinc(II), cadmium(II) and mercury(II) ions in their aqueous solutions. Reactive and Functional Polymers, 56, 75–82. DOI: 10.1016/s1381-5148(03)00046-4.CrossRefGoogle Scholar
  6. Axelson, G., Hamrin, K., Fahlman, A., Nordling, C., & Lindberg, B. J. (1967). Electron spectroscopic evidence of the thiolsulphonate structure of cystine S-dioxide. Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2015–2020. DOI: 10.1016/0584-8539(67)80089-8.CrossRefGoogle Scholar
  7. Church, J. S., & Millington, K. R. (1996). Photodegradation of wool keratin: Part I. Vibrational spectroscopic studies. Biospectroscopy, 2, 249–258. DOI: 10.1002/(SICI)1520-6343(1996)2:4 <249::AID-BSPY6> 3.0.CO;2-1.CrossRefGoogle Scholar
  8. El-Sayed, H., Kantouch, A., & Raslan, W. M. (2004). Environmental and technological studies on the interaction of wool with some metal ions. Toxicological & Environmental Chemistry, 86, 141–146. DOI: 10.1080/02772240410001688233.CrossRefGoogle Scholar
  9. Evangelou, M. W. H., Ebel, M., Koerner, A., & Schaeffer, A. (2008). Hydrolysed wool: A novel chelating agent for metal chelant-assisted phytoextraction from soil. Chemosphere, 72, 525–531. DOI: 10.1016/j.chemosphere.2008.03.063.CrossRefGoogle Scholar
  10. Fabiani, C., Ruscio, F., Spadoni, M., & Pizzichini, M. (1997). Chromium(III) salts recovery process from tannery wastewaters. Desalination, 108, 183–191. DOI: 10.1016/s0011-9164(97)00026-x.CrossRefGoogle Scholar
  11. Freddi, G., Arai, T., Colonna, G. M., Boschi, A., & Tsukada, M. (2001). Binding of metal cations to chemically modified wool and antimicrobial properties of the wool-metal complexes. Journal of Applied Polymer Science, 82, 3513–3519. DOI: 10.1002/app.2213.CrossRefGoogle Scholar
  12. Ghosh, A., & Collie, S. R. (2014). Keratinous materials as novel absorbent systems for toxic pollutants. Defence Science Journal, 64, 209–221. DOI: 10.14429/dsj.64.7319.CrossRefGoogle Scholar
  13. Gotoh, T., Matsushima, K., & Kikuchi, K. I. (2004). Adsorption of Cu and Mn on covalently cross-linked alginate gel beads. Chemosphere, 55, 57–64. DOI: 10.1016/j.chemosphere.2003.10.034.CrossRefGoogle Scholar
  14. Hanzlíkova, Z., Braniša, J., Ondruška, J., & Porubská, M. (2016). The uptake and release of humidity by wool irradiated with electron beam. Journal of Central European Agriculture, accepted.Google Scholar
  15. Hussain, T. (2012). Dyeing wool with acid dyes. Retrieved January 2, 2015, from Scholar
  16. Kan, C. W., Chan, K., Yuen, C. W. M., & Miao, M. H. (1998). Surface properties of low-temperature plasma treated wool fabrics. Journal of Materials Processing Technology, 83, 180–184. DOI: 10.1016/s0924-0136(98)00060-0.CrossRefGoogle Scholar
  17. Kan, C. W., & Yuen, C. W. M. (2006). Surface characterisation of low temperature plasma-treated wool fibre. Journal of Materials Processing Technology, 178, 52–60. DOI: 10.1016/j.jmatprotec.2005.11.018.CrossRefGoogle Scholar
  18. Monier, M., Ayad, D. M., & Sarhan, A. A. (2010). Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. Journal of Hazardous Materials, 176, 348–355. DOI: 10.1016/j.jhazmat.2009.11.034.CrossRefGoogle Scholar
  19. Montgomery, M. A., & Elimelech, M. (2007). Water and sanitation in developing countries: Including health in the equation. Environmental Science & Technology, 41, 17–24. DOI: 10.1021/es072435t.CrossRefGoogle Scholar
  20. Oae, S., & Doi, J. T. (1991). Organic sulfur chemistry: Structure and mechanism. Boca Raton, FL, USA: CRC Press.Google Scholar
  21. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., & Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: a review. Science of the Total Environment, 116, 31–52. DOI: 10.1016/0048-9697(92)90363-w.CrossRefGoogle Scholar
  22. Poole, A. J., Church, J. S., & Huson, M. G. (2009). Environmentally sustainable fibers from regenerated protein. Biomacromolecules, 10, 1–8. DOI: 10.1021/bm8010648.CrossRefGoogle Scholar
  23. Porubská, M., Hanzlíková, Z., Braniša, J., Kleinová, A., Hybler, P., Fülöp, M., Ondruška, J., & Jomová, K. (2015). The effect of electron beam on sheep wool. Polymer Degradation and Stability, 111, 151–158. DOI: 10.1016/j.polymdegradstab. 2014.11.009.CrossRefGoogle Scholar
  24. Radetić, M., Jocić, J., Jovančić, P., & Rajaković, L. (2004). Sorption properties of wool. Hemijska Industrija, 58, 315–321. DOI: 10.2298/hemind0408315r. (in Serbian)CrossRefGoogle Scholar
  25. Taddei, P., Monti, P., Freddi, G., Arai, T., & Tsukada, M. (2003). Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: an IR investigation. Journal of Macromolecular Structure, 650, 105–113. DOI: 10.1016/s0022-2860(03)00147-9.CrossRefGoogle Scholar
  26. Tsukada, M., Arai, T., Colonna, G. M., Boschi, A., & Freddi, G. (2003). Preparation of metal-containing protein fibers and their antimicrobial properties. Journal of Applied Polymer Science, 89, 638–644. DOI: 10.1002/app.11911.CrossRefGoogle Scholar
  27. Xu, W. L., Shen, X. L., Wang, X., & Ke, G. Z. (2006). Effective methods for further improving the wool properties treated by corona discharge. Sen’i Gakkaishi, 62, 111–114. DOI: 10.2115/fiber.62.111.CrossRefGoogle Scholar
  28. Zhao, X., & He, J. X. (2011). Improvement in dyeability of wool fabric by microwave treatment. Indian Journal of Fibre & Textile Research, 36, 58–62.Google Scholar
  29. Zheljazkov, V. D., Stratton, G. W., Pincock, J., Butler, S., Jeliazkova, E. A., Nedkov, N. K., & Gerard, P. D. (2009). Wool-waste as organic nutrient source for containergrown plants. Waste Management, 29, 2160–2164. DOI: 10.1016/j.wasman.2009.03.009.CrossRefGoogle Scholar
  30. Zoccola, M., Aluigi, A., & Tonin, C. (2009). Characterisation of keratin biomass from butchery and wool industry wastes. Journal of Molecular Structure, 938, 35–40. DOI: 10.1016/j.molstruc.2009.08.036.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Zuzana Hanzlíková
    • 1
    • 2
  • Jana Braniša
    • 1
  • Peter Hybler
    • 3
  • Ivana Šprinclová
    • 1
  • Klaudia Jomová
    • 1
  • Mária Porubská
    • 1
  1. 1.Department of Chemistry, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovakia
  2. 2.Department of Ecology and Environmental SciencesConstantine the Philosopher University in NitraNitraSlovakia
  3. 3.University Centre of Electron Accelerators in TrenčínSlovak Medical UniversityBratislavaSlovakia

Personalised recommendations