Chemical Papers

, Volume 70, Issue 9, pp 1196–1203 | Cite as

Influence of pH and cationic surfactant on stability and interfacial properties of Algerian bitumen emulsion

  • Abdelkader Benderrag
  • Mortada Daaou
  • Boumedienne Bounaceur
  • Boumedienne Haddou
Original Paper


The influence of water pH and cationic surfactant content on the interfacial properties and stability of an Algerian bitumen aqueous emulsion were investigated. While the stability was quantified by both the test-bottle method and size distribution measurements, the interfacial properties of the water-bitumen interface were assessed using interfacial tension measurements. Optical microscopy was also used to visualise the dispersed water droplets in the oil phase. The results showed that addition of the cationic surfactant at a concentration of 25 mmol L−1 in acidic water (pH 2) improves the bitumen emulsion stability and effectively decreases the interfacial tension.


Algerian bitumen cationic surfactant interfacial properties emulsion stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acevedo, S., Gutierrez, X., & Rivas, H. (2001). Bitumen-in-water emulsions stabilized with natural surfactants. Journal of Colloid and Interface Science, 242, 230—238. DOI: 10.1006/jcis.2001.7728.Google Scholar
  2. Anton, R. E., & Salager, J. L. (1996). Phase behavior of pH-dependent systems containing oil-water and fatty acid, fatty amine or both. In Proceedings of the 4th World Surfactants Congress, June 3—7, 1996 (pp. 244–256). Barcelona, Spain: AEPSAT.Google Scholar
  3. Arla, D., Sinquin, A., Palermo, T., Hurtevent, C., Graciaa, A., & Dicharry, C. (2007). Influence of pH and water content on the type and stability of acidic crude oil emulsions. Energy & Fuels, 21, 1337–1342. DOI: 10.1021/ef060376j.CrossRefGoogle Scholar
  4. Association Française de Normalisation (2010). Paints and varnishes — characterization of coating materials. AFNOR-NF T36–005. Paris, France: Association Françcaise de Normalisation.Google Scholar
  5. Benjamins, J., Cagna, A., & Lucassen-Reynders, E. H. (1996). Viscoelastic properties of triacylglycerol/water interfaces covered by proteins. Colloids and Surfaces A, 114, 245–254. DOI: 10.1016/0927-7757(96)03533-9.CrossRefGoogle Scholar
  6. D04 Committee (2007). Standard test method for ductility of bituminous materials. ASTM D113-07. West Conshohocken, PA, USA: ASTM International. DOI: 10.1520/d0113–07.Google Scholar
  7. D04 Committee (2013). Standard test method for penetration of bituminous materials. ASTM D5/D5M-13. West Conshohocken, PA, USA: ASTM International. DOI: 10.1520/ d0005_d0005m-13.Google Scholar
  8. D08 Committee (2014). Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36/D36M-14e1. West Conshohocken, PA, USA: ASTM International. DOI: 10.1520/d0036_d0036m-14e01.Google Scholar
  9. Daaou, M., Bendedouch, D., & Bouhadda, Y. (2005). Treatment of hydrocarbon waste water by demulsification process. In 1st International Seminar in Environment and their Connected Problem (SIEPC2005), June 5–7, 2005. Bejaia, Algeria: University of Abderrahmane Mira.Google Scholar
  10. Daaou, M., & Bendedouch, D. (2012). Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. Journal of Saudi Chemical Society, 16, 333–337. DOI: 10.1016/j.jscs.2011.05.015.CrossRefGoogle Scholar
  11. dos Santos, R. G., Bannwart, A. C., Briceno, M. I., & Loh, W. (2011). Physico-chemical properties of heavy crude oil-in-water emulsions stabilized by mixtures of ionic and non-ionic ethoxylated nonylphenol surfactants and medium chain alcohols. Chemical Engineering Research and Design, 89, 957–967. DOI: 10.1016/j.cherd.2010.11.020.CrossRefGoogle Scholar
  12. Firoozifar, S. H., Foroutan, S., & Foroutan, S. (2010). The effect of pH and bituminous density on stabilization of bitumen-in-water emulsion. Petroleum & Coal, 52, 31–34.Google Scholar
  13. Fortuny, M., Oliveira, C. B. Z., Melo, R. L. F. V., Nele, M., Coutinho, R. C. C., & Santos, A. F. (2007). Effect of salinity, temperature, water content and pH on the microwave demulsification of crude oil emulsions. Energy & Fuels, 21, 1358–1364. DOI: 10.1021/ef0603885.CrossRefGoogle Scholar
  14. Gingras, J. P., Tanguy, P. A., Mariotti, S., & Chaverot, P. (2005). Effect of process parameters on bitumen emulsions. Chemical Engineering and Processing, 44, 979–986. DOI: 10.1016/j.cep.2005.01.003.CrossRefGoogle Scholar
  15. Gutierez, X., Silva, F., Chirinos, M., Leiva, J., & Rivas, H. (2002). Bitumen-in-water emulsions: An overview on formation, stability and rheological properties. Journal of Dispersion Science and Technology, 23, 405–418. DOI: 10.1080/01932690208984213.CrossRefGoogle Scholar
  16. Hunter, R. J. (1989). Foundations of colloid science, vol. 2. New York, NY, USA: Oxford University Press.Google Scholar
  17. Jeribi, M., Almir-Assad, B., Langevin, D., Henaut, I., & Argillier, J. F. (2002). Adsorption kinetics of asphaltenes at liquid interfaces. Journal of Colloid and Interface Science, 256, 268–272. DOI: 10.1006/jcis.2002.8660.CrossRefGoogle Scholar
  18. Long, Y. C., Dabros, T., & Hamza, H. (2002). Stability and settling characteristics of solvent-diluted bitumen emulsions. Fuel, 81, 1945–1952. DOI: 10.1016/s0016-2361(02)00132-1.CrossRefGoogle Scholar
  19. Mat, H. B. (2006). Study on demulsifier formulation for treating Malaysian crude oil emulsion. Ph.D. thesis, University of Technology, Pahang, Malaysia.Google Scholar
  20. McLean, J. D., & Kilpatrick, P. K. (1997). Effects of asphaltene aggregation in model heptane-toluene mixtures on stability of water-in-oil emulsions. Journal of Colloid and Interface Science, 196, 23–34. DOI: 10.1006/jcis.1997.5177.CrossRefGoogle Scholar
  21. Moradi, M., Alvarado, V., & Huzurbazar, S. (2011). Effect of salinity on water-in-crude oil emulsion: Evaluation through drop-size distribution proxy. Energy & Fuels, 25, 260–268. DOI: 10.1021/ef101236h.CrossRefGoogle Scholar
  22. European Committee for Standardization (2003). Bitumen and bituminous binders. Determination of the efflux time of petroleum cut-back and fluxed bitumens. EN 13357:2002. Brussels, Belgium: European Comitteefor Standardization.Google Scholar
  23. European Committee for Standardization (2007). Bitumen and bituminous binders. Determination of the softening point. Ringand Ball method. EN 1427:2007. Brussels, Belgium: European Comitteefor Standardization.Google Scholar
  24. European Committee for Standardization (2015). Bitumen and bituminous binders. Determination of needle penetration. EN 1426:2015. Brussels, Belgium: European Committee for Standardization.Google Scholar
  25. Poteau, S., Argillier, J. F., Langevin, D., Pincet, F., & Perez, E. (2005). Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil-water interface. Energy & Fuels, 19, 1337–1341. DOI: 10.1021/ef0497560.CrossRefGoogle Scholar
  26. Quintero, C. G., Nolk, C., Dalmazzone, C., & Grossiord, J. L. (2009). Formation kinetics and viscoelastic properties of water/crude oil interfacial films. Oil & Gas Science and Technology–Revue de l’IFP, 64, 607–616. DOI: 10.2516/ogst/2009031.CrossRefGoogle Scholar
  27. Sjoblom, J. (2005). Emulsions and emulsion stability. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
  28. Serrien, G., Geeraerts, G., Ghosh, L., & Joos, P. (1992). Dynamic surface properties of adsorbed protein solutions: BSA, casein and buttermilk. Colloids and Surfaces, 68, 219–233. DOI: 10.1016/0166-6622(92)80208-j.CrossRefGoogle Scholar
  29. Strassner, J. E. (1968). Effect of pH on interfacial films and stability of crude oil-water emulsions. Journal of Petroleum Technology, 20, 303–312. DOI: 10.2118/1939-pa.CrossRefGoogle Scholar
  30. Tadros, T. F., & Vincent, B. (1983). Emulsion stability. In P. Becher (Ed.), Encyclopedia of emulsion technology, (Vol. 1, p. 129–268). New York, NY, USA: Dekker.Google Scholar
  31. Tsamantakis, C., Masliyah, J., Yeung, A., & Gentzis, T. (2005). Investigation of the interfacial properties of water-in-diluted-bitumen emulsions using micropipette techniques. Journal of Colloid and Interface Science, 284, 176–183. DOI: 10.1016/j.jcis.2004.10.004.CrossRefGoogle Scholar
  32. Wang, X. Y., & Alvarado, V. (2009). Direct current electrorheological stability determination of water-in-crude oil emulsions. The Journal of Physical Chemistry B, 113, 13811–13816. DOI: 10.1021/jp9030078.CrossRefGoogle Scholar
  33. Wang, X. Y., Brandvik, A., & Alvarado, V. (2010). Probing interfacial water-in-crude oil emulsion stability controls using electrorheology. Energy & Fuels, 24, 6359–6365. DOI: 10.1021/ef1008874.CrossRefGoogle Scholar
  34. Weiss, J., & McClements, D. J. (2000). Influence of Ostwald ripening on rheology of oil-in-water emulsions containing electrostatically stabilized droplets. Langmuir, 16, 2145–2150. DOI: 10.1021/la9909392.CrossRefGoogle Scholar
  35. Zhang, Y., Gong, J., Ren, Y. F., & Wang, P. Y. (2010). Effect of emulsion characteristics on wax deposition from water-in-waxy crude oil emulsions under static cooling conditions. Energy & Fuels, 24, 1146–1155. DOI: 10.1021/ef901065c.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Abdelkader Benderrag
    • 1
  • Mortada Daaou
    • 2
    • 3
  • Boumedienne Bounaceur
    • 3
  • Boumedienne Haddou
    • 1
  1. 1.Laboratory of Physical Chemistry of Materials: Catalysis and EnvironmentUniversity of Sciences and Technology of Oran Mohamed Boudiaf USTO-MBOranAlgeria
  2. 2.Laboratory of Organic Synthesis, Physical Chemistry, Bimolecular and Environment (LSPBE)University of Sciences and Technology of Oran Mohamed Boudiaf USTO-MBOranAlgeria
  3. 3.Laboratory of Macromolecular Physical Chemistry, Faculty of SciencesUniversity of OranOranAlgeria

Personalised recommendations