Chemical Papers

, Volume 70, Issue 8, pp 1094–1105 | Cite as

TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)

  • Bojan Janković
  • Milena Marinović-Cincović
  • Marija Janković
Original Paper


The thermal and thermo-oxidative processes in Aroniamelanocarpa (black chokeberry) were investigated using combined thermo-analytical (TG-DTA) and spectroscopic (FTIR) experimental techniques. Isoconversional analysis revealed that the process in an inert (argon) atmosphere was probably governed by chlorogenic acid degradation, where autocatalysis (described by the empirical Šesták-Berggren model) might occur due to water already present in the early stages of the process through hydrolysis. Thermal degradation is described by the intrinsic kinetic parameters, where the degradation rate increases proportionally with an increase in the heating rate. Under oxidative conditions, the process was found to be primarily driven by neochlorogenic acid degradation. The thermo-oxidative degradation of Aroniamelanocarpa fresh samples can be described by two competitive reactions, where it was established that a cyanidin-3-glucosylrutinoside degradation made a significant contribution to a comprehensive kinetics. This study showed the targeting of the neochlorogenic acid in Aroniamelanocarpa fresh samples to have a strong hydrogen-donating activity, thereby rendering it capable of very efficiently entrapping the peroxy radicals. Current research has demonstrated that the relative contribution of the two competitive reactions to the overall process is highly dependent on the heating rate of the system under consideration.


black chokeberry thermal stress TG-FTIR intrinsic kinetic parameters autocatalytic mechanism hydrogen-donating activity competitive reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akahira, T., Sunose, T. (1971). Trans joint convention of four electrical institutes. Research Report of Chiba Institute of Technology, 16, 22–31.Google Scholar
  2. Arslan, D. (2015). Effects of degradation preventive agents on storage stability of anthocyanins in sour cherry concentrate. Agronomy Research, 14(2), 892–899.Google Scholar
  3. Atkinson, K. E. (1989). An introduction to numerical analysis (2nd ed.). New York, NY, USA: John Wiley.Google Scholar
  4. Chen, L., Liu, J., Zhang, Y., Dai, B., An, Y., Yu, L. (2015). Structural, thermal, and anti-inflammatory properties of a novel pectic polysaccharide from Alfalfa (Medicago sativa L.) stem. Journal of Agriculture and Food Chemistry, 63, 3219–3228. DOI: 10.1021/acs.jafc.5b00494.CrossRefGoogle Scholar
  5. Coats, A. W., Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68–69. DOI: 10.1038/201068a0.CrossRefGoogle Scholar
  6. Denisov, E. T., Denisova, T. G. (2000). Handbook of antioxi-dants: Bond dissociation energies, rate constants, activation energies and enthalpies of reactions (2nd ed.). Boca Raton, FL, USA: CRC Press.Google Scholar
  7. Friedman, H. L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183–195. DOI: 10.1002/polc.5070060121.CrossRefGoogle Scholar
  8. Kissinger, H. E. (1957). Reactions kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702–1706. DOI: 10.1021/ac60131a045.CrossRefGoogle Scholar
  9. Klimek-Turek, A., Dzido, T. H. (2010). Separation selectivity of some phenolic acids in RP HPLC systems with binary mobile phase comprised various modifiers. Adsorption, 16, 287–294. DOI: 10.1007/s10450-010-9241-2.CrossRefGoogle Scholar
  10. Kokotkiewicz, A., Jaremicz, Z., Luczkiewicz, M. (2010). Aro-nia plants: A review of traditional use, biological activities, and perspectives for modern medicine. Journal of Medicinal Food, 13, 255–269. DOI: 10.1089/jmf.2009.0062.CrossRefGoogle Scholar
  11. Kulling, S. E., Rawel, H. M. (2008). Chokeberry (Aronia melanocarpa)–A review on the characteristic components and potential health effects. Planta Medica, 74, 1625–1634. DOI: 10.1055/s-0028-1088306.CrossRefGoogle Scholar
  12. Lara, I., Belge, B., Goulao, L. F. (2015). A focus on the biosynthesis and composition of cuticle in fruits. Journal of Agriculture and Food Chemistry, 63, 4005–4019. DOI: 10.1021/acs.jafc.5b00013.CrossRefGoogle Scholar
  13. Linert, W. (1992). Thermodynamic implications of substituent and solvent effects on reactivity. Journal of Chemical Information and Modeling, 32, 221–226. DOI: 10.1021/ci00007a 008.CrossRefGoogle Scholar
  14. Namiesnik, J., Vearasilp, K., Kupska, M., Ham, K. S., Kang, S. G., Park, Y. K., Barasch, D., Nemirovski, A., Gorinstein, S. (2013). Antioxidant activities and bioactive components in some berries. European Food Research and Technology, 237, 819–829. DOI: 10.1007/s00217-013-2041-7.CrossRefGoogle Scholar
  15. Nayak, B. (2011). Effect of thermal processing on the phenolic antioxidants of colored potatoes. Ph.D. thesis, Washington State University, Washington, DC, USA.Google Scholar
  16. Órfão, J. J. M. (2007). Review and evaluation of the approximations to the temperature integral. AIChE Journal, 53, 2905–2915. DOI: 10.1002/aic.11296.CrossRefGoogle Scholar
  17. Prabhu, K., Karar, P. K., Hemalatha, S., Ponnudurai, K. (2011). Isolation of chlorogenic acid from the stems of Viburnum coriaceum Blume. Der Pharmacia Sinica, 2, 87–92.Google Scholar
  18. Reis, N., Franca, A. S., Oliveira, L. S. (2013). Performance of diffuse reflectance infrared Fourier transform spectroscopy and chemometrics for detection of multiple adulterants in roasted and ground coffee. LWT–Food Science and Technology (Lebensmittel–Wissenschaft und Technologie), 53, 395–401. DOI: 10.1016/j.lwt.2013.04.008.CrossRefGoogle Scholar
  19. Reyes, L. F., Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100, 885–894. DOI: 10.1016/j.foodchem.2005.11.002.CrossRefGoogle Scholar
  20. Simeonov, S. B., Botushanov, N. P., Karahanian, E. B., Pavlova, M. B., Husianitis, H. K., Troev, D. M. (2002). Effects of Aronia melanocarpa juice as part of the dietary regimes in patients with diabetes mellitus. Folia Medica (Plovdiv), 44, 20–23.Google Scholar
  21. Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., Water-house, G. I. N. (2013). Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Research International, 50, 574–585. DOI: 10.1016/j.foodres.2011.03.039.CrossRefGoogle Scholar
  22. Šesták, J., Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3, 1–12. DOI: 10.1016/0040-6031(71)85051-7.CrossRefGoogle Scholar
  23. Šnebergrová, J., Cižková, H., Neradová, E., Kapci, B., Rajchl, A., Voldrich, M. (2014). Variability of characteristic components of aronia. Czech Journal of Food Science, 32, 25–30.Google Scholar
  24. Vyazovkin, S., Linert, W. (1995). The application of isocon-versional methods for analyzing isokinetic relationships occurring at thermal decomposition of solids. Journal of Solid State Chemistry, 114, 392–398. DOI: 10.1006/jssc.1995.1060.CrossRefGoogle Scholar
  25. Vyazovkin, S. (1996). A unified approach to kinetic processing of nonisothermal data. International Journal of Chemical Kinetics, 28, 95–101. DOI: 10.1002/(SICI)1097-4601(1996)28:2< 95::AID-KIN4> 3.0.CO;2-G.CrossRefGoogle Scholar
  26. Yakovlev, A. I., Martynov, E. G. (1979). Dynamics of the accumulation of polysaccharides in Aronia melanocarpa. Chemistry of Natural Compounds, 15, 69–70. DOI: 10.1007/bf00570856.CrossRefGoogle Scholar
  27. Zorić, Z., Dragović-Uzelac, V., Pedisić, S., Kurtanjek, Z., Elez Garofulic, I. (2014). Kinetics of the degradation of antho-cyanins, phenolic acids and flavonols during heat treatments of freeze-dried sour cherry marasca paste. Food Technology and Biotechnology, 52, 101–108.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Bojan Janković
    • 1
  • Milena Marinović-Cincović
    • 2
  • Marija Janković
    • 3
  1. 1.Department for Dynamics and Matter Structure, Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Laboratory for Radiation Chemistry and PhysicsBelgradeSerbia
  3. 3.Radiation and Environmental Protection Department, Institute of Nuclear Sciences “Vinča”University of BelgradeBelgradeSerbia

Personalised recommendations