Skip to main content
Log in

Flow field in a downward diverging channel and its application

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The flow in a downward divergent channel turns out to be an interesting experimental setup for the observation of upward floating bubbles that appear to be levitating in view of the observer. A more detailed analysis of this flow and its characteristic parameters is necessary for better understanding of this phenomenon. The boundary layer theory was used to derive the velocity field for the experimental setup. The actual flow of a liquid in the presence of a bubble was studied experimentally by measuring the position of the bubble; the data were then statistically processed by an image analysis. Observation of the bubble positions distribution showed that it is reasonable to assume a flat velocity profile of the liquid in the channel and that the bubbles do not tend to move into the boundary layer. In our experiments, volume of the air bubbles floating in water was 200 mm and of that of bubbles floating in aqueous glycerin was 300 mm3. Thus, the experiment used in this work is suitable for reliable determination of instantaneous and average bubble rising velocities as well as of those of horizontal and vertical oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alves, S. S., Orvalho, S. P., Vasconcelos, J. M. T. (2005). Effect of bubble contamination on rise velocity and mass transfer. Chemical Engineering Science, 60, 1–9. DOI: 10.1016/j.ces.2004.07.053.

    Article  CAS  Google Scholar 

  • Badam, V. K., Buwa, V., & Durst, F. (2007). Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition. The Canadian Journal of Chemical Engineering, 85, 257–267. DOI: 10.1002/cjce.5450850301.

    Article  CAS  Google Scholar 

  • Bardina, J., Lyrio, A., Kline, S. J., Ferziger, J. H., Johnston, J. P. (1981). A prediction method for planar diffuser flows. Journal of Fluids Engineering, 103, 315–321. DOI: 10.1115/1.3241739.

    Article  CAS  Google Scholar 

  • Bordas, M. L., Cartellier, A., Sechet, P., Boyer, C. (2006). Bubbly flow through fixed beds: Microscale experiments in the dilute regime and modeling. AICHE Journal, 52, 3722–3743. DOI: 10.1002/aic.10980.

    Article  CAS  Google Scholar 

  • Fox, R. W., Kline, S. J. (1962). Flow regimes in curved subsonic diffusers. Journal of Basic Engineering, 84, 303–312. DOI: 10.1115/1.3657307.

    Article  Google Scholar 

  • Kline, S. J., Bardina, J. G., Strawn, R. C. (1983). Correlation of the detachment of two-dimensional turbulent boundary layers. AIAA Journal, 21, 68–73. DOI: 10.2514/3.8029.

    Article  Google Scholar 

  • Kulkarni, A. A., Joshi, J. B. (2005). Bubble formation and bubble rise velocity in gas–liquid systems: A review. Industrial &Engineering Chemistry Research, 44, 5873–5931. DOI: 10.1021/ie049131p.

    Article  CAS  Google Scholar 

  • Lehr, F., Millies, M., Mewes, D. (2002). Bubble-size distributions and flow fields in bubble columns. AICHE Journal, 48, 2426–2443. DOI: 10.1002/aic.690481103.

    Article  CAS  Google Scholar 

  • Lin, T. J., Tsuchiya, K., Fan, L. S. (1998). Bubble flow characteristics in bubble columns at elevated pressure and temperature. AIChE Journal, 44, 545–560. DOI: 10.1002/aic.690440306.

    Article  CAS  Google Scholar 

  • Machacová, K., Raška, P., Wichterle, K., Vecer, M., Ružicka, M. (2005). Periodicity of the motion of wobbling ellipsoidal bubbles. In Proceedings of the 52nd Conference CHISA 2005, October 17–20, 2005 (0215). Srní, Czech Republic: Czech Society of Chemical Engineering. (in Czech)

    Google Scholar 

  • Machacová, K., Wichterle, K., Vecer, M. (2006). Motion periodicity of wobbling ellipsoidal bubbles. In J. Markoš, V. Štefuca (Eds.), Proceedings of the 33rd International Conference of Slovak Society of Chemical Engineering, May 21–25, 2001 (P062, pp. 270–273). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

  • Mendelson, H. D. (1967). The prediction of bubble terminal terminal velocity from wave theory. AICHE Journal, 13, 250–253. DOI: 10.1002/aic.690130213.

    Article  CAS  Google Scholar 

  • Moo-Young, M., Fulford, G., Cheyne, I. (1971). Bubble motion studies in a countercurrent flow apparatus. Industrial &Engineering Chemistry Fundamentals, 10, 157–160. DOI: 10.1021/i160037a027.

    Article  CAS  Google Scholar 

  • Mudde, R. F. (2005). Gravity-driven bubbly flows. Annual Review of Fluid Mechanics, 37, 393–423. DOI: 10.1146/ annurev.fluid.37.061903.175803.

    Article  Google Scholar 

  • Ravelet, F., Colin, C., Risso, F. (2011). On the dynamics and breakup of a bubble rising in a turbulent flow. Physics of Fluids, 23, 103–301. DOI: 10.1063/1.3648035.

    Article  Google Scholar 

  • Ribeiro, C. P., Jr., Mewes, D. (2006). On the effect of liquid temperature upon bubble coalescence. Chemical Engineering Science, 61, 5704–5716. DOI: 10.1016/j.ces.2006.04.043.

    Article  CAS  Google Scholar 

  • Roizard, C., Mokrani, F., Le Gall, H., Midoux, N. (1993). Gasabsorption in a centrifugal reactor: hydrodynamics. Chemical Engineering Science, 48, 2599–2608. DOI: 10.1016/ 0009-2509(93)80270-z.

    Article  CAS  Google Scholar 

  • Schlichting, H., Gersten, K. (2000). Boundary-layer theory (8th ed.). Berlin, Germany: Springer.

    Book  Google Scholar 

  • Schulze, G., Schlünder, E. U. (1985). Physical absorption of single gas bubbles in degassed and preloaded water. Chemical Engineering and Processing: Process Intensification, 19, 27–37. DOI: 10.1016/0255-2701(85)80002-7.

    Article  CAS  Google Scholar 

  • Smutná, K., Wichterle, K., Vecer, M. (2008). Study on behavior of bubbles rising in various liquids. In Proceedings of the 18th International Conference CHISA 2008, August 24–28, 2008 (P1.14). Prague, Czech Republic: Czech Society of Chemical Engineering.

    Google Scholar 

  • Stanovsky, P., Ruzicka, M. C., Martins, A., Teixeira, J. A. (2011). Meniscus dynamics in bubble formation: A parametric study. Chemical Engineering Science, 66, 3258–3267. DOI: 10.1016/j.ces.2011.02.004.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Osumi, T., Tsuchiya, K. (2007). Correlating mass transfer coefficient for bubbles of different sizes: from mi-crospheres to large caps. In Proceedings of the 6th International Conference on Multiphase Flow, ICMF 2007, July 9–13, 2007. Leipzig, Germany: ERCOFTAC.

    Google Scholar 

  • Tomiyama, A., Celata, G. P., Hosokawa, S., Yoshida, S. (2002). Terminal velocity of single bubbles in surface tension force dominant regime. International Journal of Multiphase Flow, 28, 1497–1519. DOI: 10.1016/s0301-9322(02)00032-0.

    Article  CAS  Google Scholar 

  • Tsuge, H. (1986). Hydrodynamics of bubble formation from submerged orifices. In N. P. Cheremisinoff (Ed.) Encyclopedia of fluid mechanics: Supplement 3: Advances in flow dynamics (pp. 191–232). Houston, TX, USA: Gulf Publishing Company.

    Google Scholar 

  • Vasconcelos, J. M. T., Orvalho, S. P., Alves, S. S. (2002). Gas–liquid mass transfer to single bubbles: Effect of surface contamination. AICHE Journal, 48, 1145–1154. DOI: 10.1002/aic.690480603.

    Article  CAS  Google Scholar 

  • Vecer, M., Lestinsky, P., Wichterle, K., Ruzicka, M. (2012). On bubble rising in countercurrent flow. International Journal of Chemical Reactor Engineering, 10, A30. DOI: 10.1515/1542-6580.2995.

    Article  Google Scholar 

  • Vejrazka, J., Fujasová, M., Stanovsky, P., Ruzicka, M. C., & Drahoš, J. (2008). Bubbling controlled by needle movement. Fluid Dynamics Research, 40, 521–533, DOI: 10.1016/j. fluiddyn.2007.12.008.

    Article  Google Scholar 

  • Wang, G. F., Lowry, M., Zhong, Z. M., Geng, L. (2005). Direct observation of frits and dynamic air bubble formation in capillary electrochromatography using confocal fluorescence microscopy. Journal of Chromatography A, 1062, 275–283. DOI: 10.1016/j.chroma.2004.11.052.

    Article  CAS  Google Scholar 

  • Wellek, R. M., Agrawal, A. K., Skelland, A. H. P. (1966). Shape of liquid drops moving in liquid media. AICHE Journal, 12, 854–862. DOI: 10.1002/aic.690120506.

    Article  CAS  Google Scholar 

  • Wichterle, K., Wichterlová, J., Kulhánková, L. (1999). Technika levitujících bublin pro studium prenosu hybnosti a hmoty. In Proceedings of the 46th Conference CHISA 99, October 18–21, 1999. Srní, Czech Republic: Czech Society of Chemical Engineering. (in Czech)

    Google Scholar 

  • Wichterle, K., Kulhánková, L., Wichterlová, J. (2000). Bubble rise in swirl flow. In Proceedings of the 14th International Congress CHISA 2000, August 27–31, 2000 (P1.38). Prague, Czech Republic: Czech Society of Chemical Engineering.

    Google Scholar 

  • Wichterle, K. (2001). Dynamics of rising bubbles. In Proceedings of the 28th International Conference of Slovak Society of Chemical Engineering, May 21–25, 2001 (pp. 72–73). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Wichterle, K., Wichterlová, J., Kulhánková, L. (2005). Breakup of bubbles rising in liquids of low and moderate viscosity. Chemical Engineering Communications, 192, 550–556. DOI: 10.1080/00986440590495034.

    Article  CAS  Google Scholar 

  • Wichterle, K., Vecer, M., Ružicka, M. C. (2014). Asymmetric deformation of bubble shape: cause or effect of vortex-shedding? Chemical Papers, 68, 74–79. DOI: 10.2478/ s11696-013-0406-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Večeř.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Večeř, M., Wichterle, K. Flow field in a downward diverging channel and its application. Chem. Pap. 70, 1106–1116 (2016). https://doi.org/10.1515/chempap-2016-0044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0044

Keywords

Navigation