Skip to main content
Log in

Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A method for using a hyperbranched polymer (HBP) as a bridge to link multiple secondary antibodies at HBP branches to amplify the detection response signal on a quartz crystal microbalance (QCM)-based sandwich-type immunosensor is reported. Carboxyl groups were prepared at multiple branches of HBP to make possible chemical binding between HBP and secondary antibodies via the carboxyl-amine reaction. The total mass of HBP and its linked multiple secondary antibodies were used to enhance the signal on a QCM chip in comparison with a simple sandwich-type immune reaction. By contrast, the proposed method could cause one antigen to analogously react with multiple secondary antibodies as a result of the branch structure of HBP. The strategy of using HBP as a bridge to link multiple secondary antibodies succeeded in quantitatively detecting the hepatitis B surface antigen (HBsAg). By employing demonstrated HBP bridge-linking, the frequency shift on a QCM chip was approximately 5 times greater than conventional methods without modification at secondary antibodies. The limit of detection of HBsAg was achieved as 2.0 ng mL−1, lower than most of the values recorded in the literature measured by the QCM technique. Taking into account the general chemical interaction of immunoreaction, this method has the potential to amplify the signal in sensing many other analytes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayramoglu, G., Ozalp, V. C., Yilmaz, M., Guler, U., Salih, B., Arica, M. Y. (2015). Lysozyme specific aptamer immobilized MCM-41 silicate for single-step purification and quartz crystal microbalance (QCM)-based determination of lysozyme from chicken egg white. Microporous and Meso-porous Materials, 207, 95–104. DOI: 10.1016/j.micromeso.2015.01.009.

    Article  CAS  Google Scholar 

  • Buttry, D. A., Ward, M. D. (1992). Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews, 92, 1355–1379. DOI: 10.1021/cr00014a006.

    Article  CAS  Google Scholar 

  • Chen, Q., Tang, W., Wang, D., Wu, X., Li, N., Liu, F. (2010). Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles. Biosensors and Bioelec-tronics, 26, 575–579. DOI: 10.1016/j.bios.2010.07.034.

    Article  CAS  Google Scholar 

  • Cheng, C. I., Chang, Y. P., Chu, Y. H. (2012). Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chemical Society Reviews, 41, 1947–1971. DOI: 10.1039/c1cs15168a.

    Article  CAS  Google Scholar 

  • Dultsev, F. N., & Tronin, A. V. (2015). Rapid sensing of hepatitis B virus using QCM in the thickness shear mode. Sensors and Actuators B: Chemical, 216, 1–5. DOI: 10.1016/j.snb.2015.04.027.

    Article  CAS  Google Scholar 

  • Gao, C., Yan, D. (2004). Hyperbranched polymers: from synthesis to applications. Progress in Polymer Science, 29, 183–275. DOI: 10.1016/j.progpolymsci.2003.12.002.

    Article  CAS  Google Scholar 

  • Ge, J., Yan, M., Lu, D., Zhang, M., Liu, Z. (2007). Hyper-branched polymer conjugated lipase with enhanced activity and stability. Biochemical Engineering Journal, 36, 93–99. DOI: 10.1016/j.bej.2007.02.018.

    Article  CAS  Google Scholar 

  • Jaruwongrungsee, K., Waiwijit, U., Wisitsoraat, A., Sang-worasil, M., Pintavirooj, C., Tuantranont, A. (2015). Realtime multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance. Biosensors and Bioelectronics, 67, 576–581. DOI: 10.1016/j.bios.2014. 09.047.

    Article  CAS  Google Scholar 

  • Jeong, B., Akter, R., Han, O. H., Rhee, C. K., & Rahman, M. A. (2013). Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Analytical Chemistry, 85, 1784–1791. DOI: 10.1021/ac303142e.

    Article  CAS  Google Scholar 

  • Ji, L., Guo, Z., Yan, T., Ma, H., Du, B., Li, Y., Wei, Q. (2015). Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels. Biosensors and Bioelectronics, 68, 757–762. DOI: 10.1016/j.bios.2015.02.010.

    Article  CAS  Google Scholar 

  • Luppa, P. B., Sokoll, L. J., Chan, D. W. (2001). Immuno-sensors—principles and applications to clinical chemistry. Clinica Chimica Acta, 314, 1–26. DOI: 10.1016/s0009-8981 (01)00629-5.

    Article  CAS  Google Scholar 

  • Mao, X., Yang, L., Su, X. L., Li, Y. (2006). A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 21, 1178–1185. DOI: 10.1016/j.bios.2005.04. 021.

    Article  CAS  Google Scholar 

  • O’Sullivan, C. K., & Guilbault, G. G. (1999). Commercial quartz crystal microbalances–theory and applications. Biosensors and Bioelectronics, 14, 663–670. DOI: 10.1016/s0956-5663(99)00040-8.

    Article  Google Scholar 

  • Pei, X., Zhang, B., Tang, J., Liu, B., Lai, W., Tang, D. (2013). Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Analytica Chimica Acta, 758, 1–18. DOI: 10.1016/j.aca.2012.10.060.

    Article  CAS  Google Scholar 

  • Qian, J., Zhang, C., Cao, X., Liu, S. (2010). Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Analytical Chemistry, 82, 6422–6429. DOI: 10.1021/ac100558t.

    Article  CAS  Google Scholar 

  • Raj, G., Swalus, C., Delcroix, M., Devillers, M., Dupont-Gillain, C., & Gaigneaux, E. M. (2015). In situ quartz crystal microbalance monitoring of the adsorption of poly-oxometalate on a polyampholyte polymer matrix. Journal of Colloid and Interface Science, 445, 24–30. DOI: 10.1016/j.jcis.2014.12.035.

    Article  CAS  Google Scholar 

  • Shen, G., Liu, M., Cai, X., Lu, J. (2008). A novel piezoelectric quartz crystal immnuosensor based on hyperbranched polymer films for the detection of a-fetoprotein. Analytica Chimica Acta, 630, 75–81. DOI: 10.1016/j.aca.2008.09.053.

    Article  CAS  Google Scholar 

  • Shen, G., Cai, C., Wang, K., Lu, J. (2011a). Improvement of antibody immobilization using hyperbranched polymer and protein A. Analytical Biochemistry, 409, 22–27. DOI: 10.1016/j.ab.2010.09.028.

    Article  CAS  Google Scholar 

  • Shen, Z. Q., Wang, J. F., Qiu, Z. G., Jin, M., Wang, X. W., Chen, Z. L., Li, J. W., Cao, F. H. (2011b). QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold. Biosensors and Bioelectronics, 26, 3376–3381. DOI: 10.1016/j.bios.2010.12.035.

    Article  CAS  Google Scholar 

  • Tang, D. Q., Zhang, D. J., Tang, D. Y., Ai, H. (2006). Amplification of the antigen-antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface. Journal of Immunological Methods, 316, 144–152. DOI: 10.1016/j.jim. 2006.08.012.

    Article  CAS  Google Scholar 

  • Wu, D., Guo, Z., Liu, Y., Guo, A., Lou, W., Fan, D., Wei, Q. (2015). Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta, 134, 305–309. DOI: 10.1016/j.talanta.2014.11.025.

    Article  CAS  Google Scholar 

  • Xin, T. B., Chen, H., Lin, Z., Liang, S. X., Lin, J. M. (2010). A secondary antibody format chemiluminescence immunoassay for the determination of estradiol in human serum. Talanta, 82, 1472–1477. DOI: 10.1016/j.talanta.2010.07.023.

    Article  CAS  Google Scholar 

  • Yang, V. C. M., Ngo, T. T. (2000). Biosensors and their applications. New Yourk, NY, USA: Springer.

    Book  Google Scholar 

  • Yang, F., Yang, Z., Zhuo, Y., Chai, Y., Yuan, R. (2015). Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Biosensors and Bioelectronics, 66, 356–362. DOI: 10.1016/j.bios.2014. 10.066.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LQ., Shen, HX., Cheng, Q. et al. Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies. Chem. Pap. 70, 1031–1038 (2016). https://doi.org/10.1515/chempap-2016-0039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0039

Keywords

Navigation