Skip to main content
Log in

Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Recent investigations into plant tissues have indicated that the free form of the natural polyphe-nolic antioxidant, ellagic acid (EA), is much more plentiful than first envisaged; consequently a re-assessment of solvent systems for the extraction of this water-insoluble form is needed. As EA solubility and its UV-Vis spectrum, commonly used for detection and quantification, are both governed by pH, an understanding of this dependence is vital if accurate EA measurements are to be achieved. After evaluating the pH effects on the solubility and UV-Vis spectra of commercial EA, an extraction protocol was devised that promoted similar pH conditions for both standard solutions and plant tissue extracts. The extraction so devised followed by HPLC with photodiode-array detection (DAD) provided a simple, sensitive and validated methodology that determined free EA in a variety of plant extracts. The use of 100 % methanol or a triethanolamine-based mixture as the standard dissolving solvents were the best choices, while these higher pH-generating solvents were more efficient in extracting EA from the plants tested with the final choice allied to the plants’ natural acidity. Two of the native Australian plants anise myrtle (Syzygium anisatum) and Kakadu plum (Terminalia ferdinandiana) exhibited high concentrations of free EA. Furthermore, the dual approach to measuring EA UV-Vis spectra made possible an assessment of the effect of acidified eluent on EA spectra when the DAD was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaby, K., Skrede, G., & Wrolstad, R. E. (2005). Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria anananassa). Journal of Agricultural and Food Chemistry, 53, 4032–4040. DOI: 10.1021/jf048001o.

    Article  CAS  Google Scholar 

  • Aguilera-Carbo, A., Augur, C., Prado-Barragan, L., Aguilar, C., Favela-Torres, E. (2008). Extraction and analysis of ellagic acid from novel complex sources. Chemical Papers, 62, 440–444. DOI: 10.2478/s11696-008-0042-y.

    Article  CAS  Google Scholar 

  • Amakura, Y., Okada, M., Tsuji, S., Tonogai, Y. (2000). Highperformance liquid chromatographic determination with photodiode array detection of ellagic acid in fresh and processed fruits. Journal of Chromatography A, 896, 87–93. DOI: 10.1016/s0021-9673(00)00414-3.

    Article  CAS  Google Scholar 

  • Association of Official Analytical Chemists (1995). Official methods of AOAC international official method 964.22. (14th ed.). Arlington, VA, USA: Association of Official Analytical Chemists International.

    Google Scholar 

  • Bala, I., Bhardwaj, S., Hariharan, M. N. V., Kumar, R. (2006). Analytical methods for assay of ellagic acid and its solubility studies. Journal of Pharmaceutical and Biomedical Analysis, 40, 206–210. DOI: 10.1016/j.jpba.2005.07.006.

    Article  CAS  Google Scholar 

  • Barch, D. H., Rundhaugen, L. M., Stoner, G. D., Pillay, N. S., Rosche, W. A. (1996). Structure-function relationships of the dietary anticarcinogen ellagic acid. Carcinogenesis, 17, 265–269. DOI: 10.1093/carcin/17.2.265.

    Article  CAS  Google Scholar 

  • Budavari, S. (1996). The Merck index. (12th ed.). Kenilworth, NJ, USA: Merck.

    Google Scholar 

  • Canals, I., Portal, J. A., Bosch, E., Rosés, M. (2000). Retention of ionizable compounds on HPLC. 4. Mobile phase pH measurement in methanol/water. Analytical Chemistry, 72, 1802–1809. DOI: 10.1021/ac990943i.

    Article  CAS  Google Scholar 

  • da Silva Pinto, M., Lajolo, F. M., Genovese, M. I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107, 1629–1635. DOI: 10.1016/j.foodchem.2007.10.038.

    Article  Google Scholar 

  • Exner, T., & Rickard, K. A. (1982). Contact activation by ellagic acid — the concept of soluble activator disputed. Thrombosis Research, 26, 83–89. DOI: 10.1016/0049-3848(82)90017-2.

    Article  CAS  Google Scholar 

  • Fredich, J. E. (2005). Titratable activity of acid tastants. In R. E. Wrolstad, T. E. Acree, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker, D. M. Smith., P. Sporns (Eds.), Handbook of food analytical chemistry (pp. 343–349). Hoboken, NJ, USA: John Wiley &Sons. DOI: 10.1002/0471709085.app1.

    Google Scholar 

  • Häkkinen, S. H., Kärenlampi, S. O., Mykkänen, H. M., Heinonen, I. M., Törrönen, A. R. (2000). Ellagic acid content in berries: Influence of domestic processing and storage. European Food Research and Technology, 212, 75–80. DOI: 10.1007/s002170000184.

    Article  Google Scholar 

  • Hasegawa, M., Terauchi, M., Kikichi, Y., Nakao, A., Okubo, J., Yoshinaga, T., Hiratsuka, H., Kobayashi, M., Hoshi, T. (2003). Deprotonation processes of ellagic acid in solution and solid states. Monatshefte für Chemie, 134, 811–821. DOI: 10.1007/s0076-002-0552-1.

    Article  CAS  Google Scholar 

  • Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pih-laja, K., Kujala, T. S., Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47, 3954–3962. DOI: 10.1021/jf990146l.

    Article  Google Scholar 

  • Konczak, I., Maillot, F., & Dalar, A. (2014). Phytochemical divergence in 45 accessions of Terminalia ferninandi-ana (Kakadu plum). Food Chemistry, 151, 248–256. DOI: 10.1016/j.foodchem.2013.11.049.

    Article  CAS  Google Scholar 

  • Landete, J. M. (2011). Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, function and health. Food Research International, 44, 1150–1160. DOI: 10.1016/j.foodres.2011.04.027.

    Article  CAS  Google Scholar 

  • Lee, J. H., & Talcott, S. T. (2004). Fruit maturity and juice extraction influences ellagic acid derivatives and other antioxidant polyphenolics in muscadine grapes. Journal of Agricultural and Food Chemistry, 52, 361–366. DOI: 10.1021/jf034971k.

    Article  CAS  Google Scholar 

  • Lee, J., Dossett, M., Finn, C. E. (2012). Rubus fruit phenolic research: The good, the bad and the confusing. Food Chemistry, 130, 785–796. DOI: 10.1016/j.foodchem.2011.08.022.

    Article  CAS  Google Scholar 

  • Maas, J. L., Wang, S. Y., Galletta, G. J. (1991). Evaluation of strawberry cultivars for ellagic acid content. Hort Science, 26, 66–68.

    Google Scholar 

  • Mattila, P., Kumpulainen, J. (2002). Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 50, 3660–3667. DOI: 10.1021/jf020028p.

    Article  CAS  Google Scholar 

  • Munõz-Munõz, J. L., Garcia-Molina, F., Garcia-Molina, M., Tudela, J., Garcia-Canovas, F., & Rodriguez-Lopez, J. N. (2009). Ellagic acid: Characterization as substrate of polyphenol oxidase. Life, 61, 171–177. DOI: 10.1002/iub.143.

    Google Scholar 

  • Panichayupakarananta, P., Issuriya, A., Sirikatitham, A., Wang, S. W. (2010). Antioxidant assay-guided purification and LC determination of ellagic acid in pomegranate peel. Journal of Chromatographic Science, 48, 456–459. DOI: 10.1093/chromsci/48.6.456.

    Article  CAS  Google Scholar 

  • Pfundstein, B., El Desouky, S. K., Hull, W. E., Haubner, R., Erben, G., Owen, R. W. (2010). Polyphenolic compounds in the fruits of Egyptian medicinal plants (Te r-minalia ballerica, Terminalia chebula and Terminalia hor-rida): Characterisation, quantitation and determination of antioxidant capacities. Phytochemistry, 71, 1132–1148. DOI: 10.1016/j.phytochem.2010.03.018.

    Article  CAS  Google Scholar 

  • Press, R. E., Hardcastle, D. (1969). Some physio–chemical properties of ellagic acid. Journal of Applied Chemistry, 19, 247–251. DOI: 10.1002/jctb.5010190903.

    Article  CAS  Google Scholar 

  • Rosés, M., Bosch, E. (2002). Influence of mobile phase acid-base equilibria on the chromatographic behavior of protolytic compounds. Journal of Chromatography A, 982, 1–30. DOI: 10.1016/s0021-9673(02)01444-9.

    Article  Google Scholar 

  • Sakulnarmrat, K., Konczak, I. (2012). Composition of native Australian herbs polyphenolic-rich fractions and in-vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chemistry, 134, 1011–1019. DOI: 10.1016/j.foodchem.2012.02.217.

    Article  CAS  Google Scholar 

  • Sanli, N., Fonrodona, G., Barrón, D., Ozkan, G., Barbosa, J. (2002). Prediction of chromatographic retention pKa values and optimization of the separation of polyphenolic acids in strawberries. Journal of Chromatography A, 975, 299–309. DOI: 10.1016/s0021-9673(02)01113-5.

    Article  CAS  Google Scholar 

  • Seeram, N. P. (2008). Berry fruits for cancer prevention: current status and future prospects. Journal of Agricultural and Food Chemistry, 56, 630–635. DOI: 10.1021/jf072504n.

    Article  CAS  Google Scholar 

  • Shrivastava, A., Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21–25. DOI: 10.4103/2229-5186.79345.

    Article  Google Scholar 

  • Simic, A. Z., Verbic, T. Z., Sentíc, M. N., Vojic, M. P., Ju-ranic, I. O., Manojlovic, D. D. (2013). Study of ellagic acid electro-oxidation mechanism. Monatshefte für Chemie, 144, 121–128. DOI: 10.1007/s00706-012-0856-8.

    Article  CAS  Google Scholar 

  • Wada, L., Ou, B. (2002). Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agricultural and Food Chemistry, 50, 3495–3500. DOI: 10.1021/jf011405l.

    Article  CAS  Google Scholar 

  • Wang, H., Cao, G., Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44, 701–705. DOI: 10.1021/jf950579y.

    Article  CAS  Google Scholar 

  • Wiczling, P., Markuszewski, M. J., Kaliszan, R. (2004). Determination of pKa by pH gradient reversed-phase HPLC. Analytical Chemistry, 76, 3069–3077. DOI: 10.1021/ ac049807q.

    Article  CAS  Google Scholar 

  • Williams, D. J., Edwards, D., Pun, S., Chaliha, M., Sultan-bawa, Y. (2014). Profiling ellagic acid content: The importance of form and ascorbic acid levels. Food Research International, 66, 100–106. DOI: 10.1016/j.foodres.2014.09.003.

    Article  CAS  Google Scholar 

  • Wolfbeis, O. S., Hochmuth, P. (1986). The fluorescence of ellagic acid and its borax complex. Monatshefte für Chemie, 117, 369–374. DOI: 10.1007/bf00816531.

    Article  CAS  Google Scholar 

  • Zafrilla, P., Ferreres, F., Tomas-Barberan, F. A. (2001). Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. Journal of Agricultural and Food Chemistry, 49, 3651–3655. DOI: 10.1021/jf010192x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, D.J., Edwards, D., Chaliha, M. et al. Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra. Chem. Pap. 70, 1078–1086 (2016). https://doi.org/10.1515/chempap-2016-0038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0038

Keywords

Navigation