Chemical Papers

, Volume 70, Issue 7, pp 960–972 | Cite as

Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y

  • Merve Biçen
  • Sevim Karataş
  • Nilhan Kayaman-Apohan
  • Atilla Güngör
Original Paper


Mixed matrix materials, containing poly(dimethylsiloxane), phosphine oxide-based polyimide, and zeolite Y were prepared by means of blending hybridisation. The thermal stability of the materials and the hydrophobic properties were enhanced. The decrease in the glass transition temperature of the materials with the increase in poly(dimethylsiloxane) content supported the polymer-chain flexibility. The pristine polyimide and the zeolite-filled polyimide exhibited the highest transparency. Fourier transform infrared (FTIR) spectroscopy confirmed that the increase in the amount of the lowest molecular mass poly(dimethylsiloxane) ingredient indicated strong alkyl and Si-O-Si stretching modes, whilst the alkyl and Si-O-Si stretching intensity decreased in the presence of the highest amount of and the highest molecular mass poly(dimethylsiloxane). The hydrophobic poly(dimethylsiloxane) moiety created an inverse relationship between the porosity of the materials (surface roughness) and the hydrophilicity. The nanocrystallite domain, identified by X-ray diffraction analysis (XRD) and possessing an exotherm crystallisation peak, occurred in the lowest amount of poly(dimethylsiloxane) with the highest molecular mass-based hybrid material. The nanocrystallite enhanced the storage modulus as determined by the dynamic mechanical analyser (DMA). The nanocrystalline formation resulted in a slight increase in the alkyl stretching and the Si-O-Si stretching of the lowest amount of and the highest molecular mass poly(dimethylsiloxane)-containing material over those of the lowest molecular mass poly(dimethylsiloxane) in the same amounts of material involved.


phosphors porous materials polymeric composites morphology nanocrystalline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, S. M. M., Agag, T., Kawauchi, T., & Takeichi, T. (2007). Organic—inorganic hybrids containing polyimide, organically modified clay and in situ formed polydimethylsiloxane. Reactive and Functional Polymers, 67, 1218–1224. DOI: 10.1016/j.reactfunctpolym.2007.07.003.CrossRefGoogle Scholar
  2. Freeman, B. D. (1999). Basis of permeability/selectivity trade-off relations in polymeric gas separation membranes. Macromolecules, 32, 375–380. DOI: 10.1021/ma9814548.CrossRefGoogle Scholar
  3. Güngör, A., Smith, C. D., Wescott, J., Srinivasan, S., & McGrath, J. E. (1991). Synthesis of fully imidized phosphorous-containing soluble polyimides. ACS Polymer Preprints, 32, 172–173.Google Scholar
  4. Guth, E. (1945). Theory of filler reinforcement. Journal of Applied Physics, 16, 20–25. DOI: 10.1063/1.1707495.CrossRefGoogle Scholar
  5. Khung, Y. L., Cole, M. A., McInnes, S. J. P., & Voelcker, N. H. (2007). Control over wettability via surface modification of porous gradients. In D. V. Nicolau, D. Abbott, K. Kalantar-Zadeh, T. Di Matteo, & S. M. Bezrukov (Eds.) Proceedings of SPIE, (Vol. 6799, 679909). DOI: 10.1117/12.759377.CrossRefGoogle Scholar
  6. Kickelbick, G. (2003). Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 28, 83–114. DOI: 10.1016/s0079-6700(02)00019-9.CrossRefGoogle Scholar
  7. Kricheldorf, H. R. (Ed.) (1996). Silicon in polymer synthesis. Berlin, Germany: Springer. DOI: 10.1007/978-3-642-79175-8.CrossRefGoogle Scholar
  8. Nakagawa, T., Nishimura, T., & Higuchi, A. (2002). Morphology and gas permeability in copolyimides containing polydimethylsiloxane block. Journal of Membrane Science, 206, 149–163. DOI: 10.1016/s0376-7388(01)00775-x.CrossRefGoogle Scholar
  9. Nakata, S., Kawata, M., Kakimoto, M. A., & Imai, Y. (1993). Synthesis and properties of new block copolymers based on polydimethylsiloxane and tetraphenylethylene-containing polyimide. Journal of Polymer Science Part A: Polymer Chemistry, 31, 3425–3432. DOI: 10.1002/pola.1993.080311331.CrossRefGoogle Scholar
  10. Rogers, K., Takacs, E., & Thompson, M. R. (2005). Contact angle measurement of select compatibilizers for polymer-silicate layer nanocomposites. Polymer Testing, 24, 423–427. DOI: 10.1016/j.polymertesting.2005.01.010.CrossRefGoogle Scholar
  11. Sang, S. Y., Liu, Z. M., Tian, P., Liu, Z. Y., Qu, L. H., & Zhang, Y. Y. (2006). Synthesis of small crystals zeolite NaY. Materials Letters, 60, 1131–1133. DOI: 10.1016/j.matlet.2005.10.110.CrossRefGoogle Scholar
  12. Schneider, M. (2011). Wettability patterning in microfluidic systems and applications in the petroleum industry. Ph.D. thesis, Pierre and Marie Curie University, Paris, France.Google Scholar
  13. Steed, J. W., & Atwood, J. L. (2009). Supramolecular chemistry (2nd ed.). Chichester, UK: Wiley.CrossRefGoogle Scholar
  14. Te Hennepe, H. J. C., Bargeman, D., Mulder, M. H. V., & Smolders, C. A. (1987). Zeolite-filled silicone rubber membranes: Part 1. Membrane preparation and pervaporation results. Journal of Membrane Science, 35, 39–55. DOI: 10.1016/s0376-7388(00)80921-7.CrossRefGoogle Scholar
  15. Ye, X. Y., Wang, J. Q., Xu, Y., Niu, L. Y., Fan, Z. J., Gong, P. W., Ma, L. M., Wang, H. G., Yang, Z. G., & Yang, S. R. (2014). Mechanical properties and thermostability of polyimide/mesoporous silica nanocomposite via effectively using the pores. Journal of Applied Polymer Science, 131, 41173. DOI: 10.1002/app.41173.Google Scholar
  16. Zuo, M., Takeichi, T., Matsumoto, A., & Tsutsumi, K. (1998). Surface characterization of polyimide films. Colloid Polymer Science, 276, 555–564. DOI: 10.1007/s003960050281.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Merve Biçen
    • 1
  • Sevim Karataş
    • 1
  • Nilhan Kayaman-Apohan
    • 1
  • Atilla Güngör
    • 1
  1. 1.Department of ChemistryMarmara UniversityGöztepe/IstanbulTurkey

Personalised recommendations