Skip to main content
Log in

Cr(VI) ion removal from artificial waste water using supported liquid membrane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, a novel flat-type synergic-supported liquid membrane was evaluated with a mixture of N-methyl-N,N,N-trioctylammonium chloride (Aliquat 336) and tributyl phosphate (TBP) as the carrier and kerosene as the diluent to remove Cr(VI) from synthetic waste water. The main parameters involved in the process were identified and optimised. The parameters were divided into two groups, those that were independent and those having an interaction. The parameters of the carrier/kerosene volumetric proportion and stirring rate were optimised individually due to their nature. The optimal values of these parameters were 0.5 and 500 min−1, respectively, for a constant carrier/kerosene ratio and stirring rate in the designed experiments using the response surface method (RSM). The four parameters of TBP/Aliquat 336, chromium concentration in the feed phase, feed and product pH were optimised using RSM; it was observed that the TBP/Aliquat 336 ratio, feed pH, pH of the stripping phase and interaction of this parameter with feed concentration have the most important effects on the removal of Cr(VI). The optimal levels of these parameters were 0.61, 71.75 mg L−1, 3.5 and 12.66 for the ratio of TBP/Aliquat 336, feed chromium concentration, pH of the feed and pH of the product, respectively. An experimental removal rate of 94.63 % at the optimized levels was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, A., Pal, C., & Sahu, K. K. (2008). Extractive removal of Chromium(IV) from industrial waste solution. Journal of Hazardous Materials, 159, 458–464. DOI: 10.1016/j.jhazmat.2008.02.121.

    Article  CAS  Google Scholar 

  • Aguilar, M., & Cortina, J. L. (2008). Solvent extraction and liquid membranes: Fundamentals and applications in new materials. Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Akkus, G. U., Memon, S., Sezgin, M., & Yilmaz, M. (2009). Synthesis of calix(aza)crown and its oligomeric analogue for the extraction of selected metal cations and dichromate anions. CLEAN — Soil, Air, Water, 37, 109–114. DOI: 10.1002/clen.200800120.

    Article  CAS  Google Scholar 

  • Alguacil, F. J., Coedo, A. G., & Dorado, M. T. (2000). Transport of chromium(VI) through a Cyanex 923—xylene flat-sheet supported liquid membrane. Hydrometallurgy, 57, 51–56. DOI: 10.1016/s0304-386x(00)00103-1.

    Article  CAS  Google Scholar 

  • Alguacil, F. J., Alonso, M., & Sastre, A.M. (2002). Copper separation from nitrate/nitric acid media using Acorga M5640 extractant: Part II. Supported liquid membrane study. Chemical Engineering Journal, 85, 265–272. DOI: 10.1016/s1385-8947(01)00167-x.

    Article  CAS  Google Scholar 

  • Arslan, G., Tor, A., Cengeloglu, Y., & Ersoz, M. (2009a). Facilitated transport of Cr(III) through activated composite membrane containing di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent. Journal of Hazardous Materials, 165, 729–735. DOI: 10.1016/j.jhazmat.2008.10.050.

    Article  CAS  Google Scholar 

  • Arslan, G., Tor, A., Muslu, H., Ozmen, M., Akin, I., Cengeloglu, Y., & Ersoz, M. (2009b). Facilitated transport of Cr(VI) through a novel activated composite membrane containing Cyanex 923 as a carrier. Journal of Membrane Science, 337, 224–231. DOI: 10.1016/j.memsci.2009.03.049.

    Article  CAS  Google Scholar 

  • Banerjea, S., Datta, S., & Sanyal, S. K. (2000). Mass transfer analysis of the extraction of Cr(VI) by liquid surfactant membrane. Separation Science and Technology, 35, 483–501.

    CAS  Google Scholar 

  • Campderrós, M. E., & Marchese, J. (2001). Transport of niobium(V) through a TBP—Alamine 336 supported liquid membrane from chloride solutions. Hydrometallurgy, 61, 89–95. DOI: 10.1016/s0304-386x(01)00165-7.

    Article  Google Scholar 

  • Castillo, E., Granados, M., & Cortina, J. L. (2002). Liquidsupported membranes in chromium(IV) optical sensing: Transport modelling. Analytica Chimica Acta, 464, 197–208. DOI: 10.1016/s0003-2670(02)00473-7.

    Article  CAS  Google Scholar 

  • Çengeloĝlu, Y., Tor, A., Kir, E., & Ersöz, M. (2003). Transport of hexavalent chromium through anion-exchange membranes. Desalination, 154, 239–246. DOI: 10.1016/s0011-9164(03)80039-5.

    Article  Google Scholar 

  • Chakravarti, A. K., Chowdhury, S. B., Chakrabarty, S., Chakrabarty, T., & Mukherjee, D. C. (1995). Liquid membrane multiple emulsion process of Cr(VI) separation from waste waters. Colloids and Surfaces A, 103, 59–71. DOI: 10.1016/0927-7757(95)03201-n.

    Article  CAS  Google Scholar 

  • Chaudry, M. A., Ahmad, S., & Malik, M. T. (1998). Supported liquid membrane technique applicability for removal of chromium from tannery wastes. Waste Management, 17, 211–218. DOI: 10.1016/s0956-053x(97)10007-1.

    Article  Google Scholar 

  • Chiarizia, R. (1991). Application of supported liquid membranes for removal of nitrate, technetium(VII) and chromium(IV) from groundwater. Journal of Membrane Science, 55, 39–64. DOI: 10.1016/s0376-7388(00)82326-1.

    Article  CAS  Google Scholar 

  • Danesi, P. R. (1984). Separation of metal species by supported liquid membranes. Separation Science and Technology, 19, 857–894. DOI: 10.1080/01496398408068598.

    Article  CAS  Google Scholar 

  • Ding, S. L., Zhao, C. C., Ren, H. J., & Yang, J. (2003). Removal of Cr(VI) by emulsion liquid membrane. Journal of the Society of Leather Technologists and Chemists, 87, 98–102.

    CAS  Google Scholar 

  • Djane, N. K., Ndung’u, K., Johnsson, C., Sartz, H., Tornstrom, T., & Mathiasson, L. (1999). Chromium speciation in natural waters using serially connected supported liquid membranes. Talanta, 48, 1121–1132. DOI: 10.1016/s0039-9140(98)00334-8.

    Article  CAS  Google Scholar 

  • Fournier-Salaün, M. C., & Vauclair, C. (2002). Recovery of chromique ions from aqueous effluents by liquid membrane in continuous mode. Desalination, 144, 227–229. DOI: 10.1016/s0011-9164(02)00316-8.

    Article  Google Scholar 

  • Gaikwad, A. G., & Damodaran, A. D. (1992). Synergic liquid—liquid extraction studies of neodymium and praseodymium with mixtures of tributyl phosphate and Aliquat-336 in nitrate media. Journal of Radioanalytical and Nuclear Chemistry, 163, 277–288. DOI: 10.1007/bf02034801.

    Article  CAS  Google Scholar 

  • Gaikwad, A. G. (2003). Synergic transport of yttrium metal ions through supported liquid membrane. Chemical and Biochemical Engineering Quarterly, 17, 327–334.

    CAS  Google Scholar 

  • Gherasim, C. V., Bourceanu, G., Olariu, R. I., & Arsene, C. (2011). A novel polymer inclusion membrane applied in chromium(VI) separation from aqueous solutions. Journal of Hazardous Materials, 197, 244–253. DOI: 10.1016/j.jhazmat.2011.09.082.

    Article  CAS  Google Scholar 

  • Gherrou, A., Kerdjoudj, H., Molinari, R., & Drioli, E. (2002). Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Separation and Purification Technology, 28, 235–244. DOI: 10.1016/s1383-5866(02)00080-1.

    Article  CAS  Google Scholar 

  • Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38, 232–242. DOI: 10.1016/s0273-2300(02)00020-x.

    Article  CAS  Google Scholar 

  • Guo, L., Liu, Y. H., Zhang, C., & Chen, J. (2011). Preparation of PVDF-based polymer inclusion membrane using ionic liquid plasticizer and Cyphos IL 104 carrier for Cr(VI) transport. Journal of Membrane Science, 372, 314–321. DOI: 10.1016/j.memsci.2011.02.014.

    Article  CAS  Google Scholar 

  • Hajarabeevi, N., Mohammed Bilal, I., Easwaramoorthy, D., & Palanivelu, K. (2009). Facilitated transport of cationic dyes through a supported liquid membrane with D2EHPA as carrier. Desalination, 245, 19–27. DOI: 10.1016/j.desal.2008.06.009.

    Article  CAS  Google Scholar 

  • Ishimori, T., & Nakamura, E. (1963). Data of inorganic solvent extraction. Part I. Tokyo, Japan: Japan Atomic Energy Research.

    Google Scholar 

  • Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., & Bakhtiari, O. (2013). Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chemical Papers, 67, 722–729. DOI: 10.2478/s11696-013-0374-0.

    Article  CAS  Google Scholar 

  • Kebiche-Senhadji, O., Tingry, S., Seta, P., & Benamor, M. (2010). Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier. Desalination, 258, 59–65. DOI: 10.1016/j.desal.2010.03.047.

    Article  CAS  Google Scholar 

  • Kocherginsky, N., Yang, Q., & Seelam, L. (2007). Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53, 171–177. DOI: 10.1016/j.seppur.2006.06.022.

    Article  CAS  Google Scholar 

  • Konczyk, J., Kozlowski, C., & Walkowiak, W. (2010). Removal of chromium(III) from acidic aqueous solution by polymer inclusion membranes with D2EHPA and Aliquat 336. Desalination, 263, 211–216. DOI: 10.1016/j.desal.2010.06.061.

    Article  CAS  Google Scholar 

  • Kozłowski, C., Apostoluk, W., Walkowiak, W., & Kita, A. (2002). Removal of Cr(VI), Zn(II) and Cd(II) ions by transport across polymer inclusion membranes with basic ion carriers. Physicochemical Problems of mineral Processing, 36, 115–122.

    Google Scholar 

  • Kozłowski, C. A., & Walkowiak, W. (2005). Applicability of liquid membranes in chromium(VI) transport with amines as ion carriers. Journal of Membrane Science, 266, 143–150. DOI: 10.1016/j.memsci.2005.04.053.

    Article  Google Scholar 

  • Kunthakudee, N., Sunsandee, N., Pancharoen, U., & Ramakul, P. (2014). Separation of yttrium from rare earth using hollow fiber-supported liquid membrane: Factorial design analysis. Desalination and Water Treatment, 57, 3985–3994. DOI: 10.1080/19443994.2014.989275.

    Article  Google Scholar 

  • Kusumocahyo, S. P., Kanamori, T., Sumaru, K., Aomatsu, S., Matsuyama, H., Teramoto, M., & Shinbo, T. (2004). Development of polymer inclusion membranes based on cellulose triacetate: Carrier-mediated transport of cerium(III). Journal of Membrane Science, 244, 251–257. DOI: 10.1016/j.memsci.2004.07.013.

    Article  CAS  Google Scholar 

  • Loiacono, O., Drioli, E., & Molinari, R. (1986). Metal ion separation and concentration with supported liquid membranes. Journal of Membrane Science, 28, 123–138. DOI: 10.1016/s0376-7388(00)82205-x.

    Article  CAS  Google Scholar 

  • Lothongkum, A. W., Ramakul, P., Sasomsub, W., Laoharochanapan, S., & Pancharoen, U. (2009). Enhancement of uranium ion flux by consecutive extraction via hollow fiber supported liquid membrane. Journal of the Taiwan Institute of Chemical Engineers, 40, 518–523. DOI: 10.1016/j.jtice.2009.03.010.

    Article  CAS  Google Scholar 

  • Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004.

    Article  CAS  Google Scholar 

  • Mahmoodi, R., Mohammadi, T., & Moghadam, M. K. (2014). Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier. Chemical Papers, 68, 751–756. DOI: 10.2478/s11696-013-0506-6.

    Article  CAS  Google Scholar 

  • Marcus, Y., & Kertes, A. S. (1969). Ion exchange and solvent extraction of metal complexes. New York, NY, USA: Wiley.

    Google Scholar 

  • Mishra, P. K., Chakravortty, V., Dash, K. C., Das, N. R., & Bhattacharyya, S. N. (1989). Extraction of zirconium(IV) from HCl solutions by mixtures of Aliquat 336 and Alamine 336 with TBP. Journal of Radioanalytical and Nuclear Chemistry, 134, 259–264. DOI: 10.1007/bf02278262.

    Article  CAS  Google Scholar 

  • Molinari, R., Drioli, E., & Pantano, G. (1989). Stability and effect of diluents in supported liquid membranes for Cr(III), Cr(VI) and Cd(II) recovery. Separation Science and Technology, 24, 1015–1032. DOI: 10.1080/01496398908049886.

    Article  CAS  Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: Process and product optimization using designed experiments. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Cattrall, R. W., & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 281, 7–41. DOI: 10.1016/j.memsci.2006.03.035.

    Article  CAS  Google Scholar 

  • Nickens, K. P., Patierno, S. R., & Ceryak, S. (2010). Chromium genotoxicity: A double-edged sword. Chemico-Biological Interactions, 188, 276–288. DOI: 10.1016/j.cbi.2010.04.018.

    Article  CAS  Google Scholar 

  • Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air and Soil Pollution, 200, 59–77. DOI: 10.1007/s11270-008-9893-7.

    Article  CAS  Google Scholar 

  • Palanivelu, K., Lakshmi, D. S., & Ranganathan, K. R. (1998). Removal and recovery of hexavalent chromium from plating wastewater using liquid membrane. Journal of Scientific & Industrial Research, 57, 903–906.

    CAS  Google Scholar 

  • Parhi, P. K. (2013). Supported liquid membrane principle and its practices: A short review. Journal of Chemistry, 2013, 618236. DOI: 10.1155/2013/618236.

    Article  Google Scholar 

  • Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3.

    Article  CAS  Google Scholar 

  • Pontius, F. W. (1990). Water quality & treatment: A handbook of community water supplies. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Pretty, J. R., Blubaugh, E. A., Caruso, J. A., & Davidson, T. M. (1994). Determination of chromium(IV) and vanadium(V) using an online anodic stripping voltammetry flow cell with detection by inductively coupled plasma mass spectrometry. Analytical Chemistry, 66, 1540–1547. DOI: 10.1021/ac00081a029.

    Article  CAS  Google Scholar 

  • Quintelas, C., Fonseca, B., Silva, B., Figueiredo, H., & Tavares, T. (2009). Treatment of chromium(VI) solutions in a pilotscale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresource Technology, 100, 220–226. DOI: 10.1016/j.biortech.2008.05.010.

    Article  CAS  Google Scholar 

  • Ramakul, P., Supajaroon, T., Prapasawat, T., Pancharoen, U., & Lothongkum, A. W. (2009). Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane. Journal of Industrial and Engineering Chemistry, 15, 224–228. DOI: 10.1016/j.jiec.2008.09.011.

    Article  CAS  Google Scholar 

  • Saf, A. Ö., Alpaydin, S., Coskun, A., & Ersoz, M. (2011). Selective transport and removal of Cr(VI) through polymer inclusion membrane containing 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine as a carrier. Journal of Membrane Science, 377, 241–248. DOI: 10.1016/j.memsci.2011.04.057.

    Article  CAS  Google Scholar 

  • Saha, B., Gill, R. J., Bailey, D. G., Kabay, N., & Arda, M. (2004). Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336. Reactive and Functional Polymers, 60, 223–244. DOI: 10.1016/j.reactfunctpolym.2004.03.003.

    Article  CAS  Google Scholar 

  • Salazar, E., Ortiz, M. I., Urtiaga, A. M., & Irabien, J. A. (1992). Kinetics of the separation-concentration of chromium(VI) with emulsion liquid membranes. Industrial & Engineering Chemistry Research, 31, 1523–1529. DOI: 10.1021/ie00006015.

    Article  CAS  Google Scholar 

  • Scindia, Y. M., Pandey, A. K., & Reddy, A. V. R. (2005). Coupled-diffusion transport of Cr(VI) across anion-exchange membranes prepared by physical and chemical immobilization methods. Journal of Membrane Science, 249, 143–152. DOI: 10.1016/j.memsci.2004.10.015.

    Article  CAS  Google Scholar 

  • Shevchenko, V., Shilin, I., & Zhdanov, Y. F. (1960). Behavior of hexavalent and trivalent chromium in uranyl and plutonium nitrate extraction by tributyl phosphate solutions. Zhurnal Neorganicheskoi Khimii, 5, 2832–2840. (in Russian)

    CAS  Google Scholar 

  • Solangi, I. B., Özcan, F., Arslan, G., & Ersöz, M. (2013). Transportation of Cr(VI) through calix[4]arene based supported liquid membrane. Separation and Purification Technology, 118, 470–478. DOI: 10.1016/j.seppur.2013.07.037.

    Article  CAS  Google Scholar 

  • Venkateswaran, P., & Palanivelu, K. (2005). Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometallurgy, 78, 107–115. DOI: 10.1016/j.hydromet.2004.10.021.

    Article  CAS  Google Scholar 

  • Vincent, T., & Guibal, E. (2000). Non-dispersive liquid extraction of Cr(VI) by TBP/Aliquat 336 using chitosan-made hollow fiber. Solvent Extraction and Ion Exchange, 18, 1241–1260. DOI: 10.1080/07366290008934732.

    Article  CAS  Google Scholar 

  • Wang, Y. C., Thio, Y. S., & Doyle, F. M. (1998). Formation of semi-permeable polyamide skin layers on the surface of supported liquid membranes. Journal of Membrane Science, 147, 109–116. DOI: 10.1016/s0376-7388(98)00129-x.

    Article  CAS  Google Scholar 

  • Wannachod, T., Phuphaibul, P., Mohdee, V., Pancharoen, U., & Phatanasri, S. (2015). Optimization of synergistic extraction of neodymium ions from monazite leach solution treatment via HFSLM using response surface methodology. minerals Engineering, 77, 1–9. DOI: 10.1016/j.mineng.2015.01.016.

    Article  CAS  Google Scholar 

  • Winstead, C. D. (2002). Extractant impregnated membranes for Cr(III) and Cr(VI). Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

    Google Scholar 

  • Yilmaz, A., Arslan, G., Tor, A., & Akin, I. (2011). Selectively facilitated transport of Zn(II) through a novel polymer inclusion membrane containing Cyanex 272 as a carrier reagent. Desalination, 277, 301–307. DOI: 10.1016/j.desal.2011.04.045.

    Article  CAS  Google Scholar 

  • Zaheri, P., Abolghasemi, H., Mohammadi, T., & Maraghe, M. G. (2015). Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier. Chemical Papers, 69, 279–290. DOI: 10.1515/chempap-2015-0007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Montazer Rahmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanmahin, O., Montazer Rahmati, M.M., Mohammadi, T. et al. Cr(VI) ion removal from artificial waste water using supported liquid membrane. Chem. Pap. 70, 913–925 (2016). https://doi.org/10.1515/chempap-2016-0027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0027

Keywords

Navigation