Skip to main content
Log in

Effect of titanium source on structural properties and acidity of Ti-pillared bentonite

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Ti-pillared bentonites (Ti-PBs) were synthesised using bentonite from the Hançılı region in Turkey. Ti(IV) chloride, Ti(IV) ethoxide and Ti(IV) propoxide were used as the titanium sources; the syntheses were carried out using different H+/Ti ratios, bentonite suspension percentages and calcination temperatures. Titanium was found in the form of titanium dioxide for all the sources. The Ti(IV) chloride source afforded a sample with a significantly higher specific BET surface area (by 323 m2 g−1), TiO2 content of 50.5 mass % and a more microporous structure with a micropore volume of 0.112 cm3 g−1; the Ti(IV) propoxide source afforded a more mesoporous structure with a higher total pore volume. The micropore region showed the formation of pores of different sizes, while prominent narrow peaks were obtained in the mesopore region. Ti-PBs, which exhibited only the anatase phase of titanium dioxide, yielded high Brønsted and Lewis acidities. When the rutile phase and the anatase phase occurred together, as a result of the lower TiO2 content, the Brønsted and Lewis acidities of the Ti-PBs decreased. The use of Ti(IV) chloride and Ti(IV) propoxide sources at H+/Ti ratios of 4.0 and a bentonite suspension percentage of 2.0 resulted in samples exhibiting strong Brønsted acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. M., & McCabe, R. W. (2011). Clay minerals as catalyst. In: F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp. 541–581). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/s1572-4352(05)01017-2.

    Google Scholar 

  • Arfaoui, J., Boudali, L. K., & Ghorbel, A. (2006). Vanadiadoped titanium-pillared clay: Preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol. Catalysis Communications, 7, 86–90. DOI: 10.1016/j.catcom.2005.09.003.

    Article  CAS  Google Scholar 

  • Arfaoui, J., Boudali, L. K., Ghorbel, A., & Delahay, G. (2008). Influence of the nature of titanium source and of vanadia content on the properties of titanium-pillared montmorillonite. Journal of Physics and Chemistry of Solids, 69, 1121–1124. DOI: 10.1016/j.jpcs.2007.10.045.

    Article  CAS  Google Scholar 

  • Arfaoui, J., Boudali, L. K., & Ghorbel, A. (2010). Catalytic epoxidation of allylic alcohol (E)-2-hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading. Applied Clay Science, 48, 171–178. DOI: 10.1016/j.clay.2009.12.005.

    Article  CAS  Google Scholar 

  • Balci, S., & Tecimer, A. (2015). Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source. Applied Surface Science, 330, 455–464. DOI: 10.1016/j.apsusc.2014.12.160.

    Article  CAS  Google Scholar 

  • Basoglu, F. T., & Balci, S. (2010). Micro-mesopore analysis of Cu2+ and Ag+ containing Al-pillared bentonite. Applied Clay Science, 50, 73–80. DOI: 10.1016/j.clay.2010.07.004.

    Article  Google Scholar 

  • Bergaya, F., Aouad, A., & Mandalia, T. (2011). Pillared clays and clay minerals. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Development in clay science: Handbook of clay science (pp. 393–421). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/s1572-4352(05)01012-3.

    Google Scholar 

  • Bineesh, K.V., Cho, D. R., Kim, S. Y., Jermy, B. R.,& Park, D. W. (2008). Vanadia-doped titania-pillared montmorillonite clay for the selective catalytic oxidation of H2S. Catalysis Communications, 9, 2040–2043. DOI: 10.1016/j.catcom.2008.03.048.

    Article  CAS  Google Scholar 

  • Bineesh, K. V., Kim, D. K., Kim, M. I., & Park, D. W. (2011). Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Applied Clay Science, 53, 204–211. DOI: 10.1016/j.clay.2010.12.022.

    Article  CAS  Google Scholar 

  • Boudali, L. K., Ghorbel, A., Tichit, D., Chiche, B., Dutartre, R., & Figueras, F. (1994). Synthesis and characterization of titanium-pillared montmorillonites. Microporous Materials, 2, 537–541. DOI: 10.1016/0927-6513(93)e0068-r.

    Article  Google Scholar 

  • Boudali, L. K., Ghorbel, A., Figueras, F., & Pinel, C. (2000). Characterization and catalytic properties of titanium pillared clays in the epoxidation of allylic alcohols. Studies in Surface Science and Catalysis, 130, 1643–1648. DOI: 10.1016/s0167-2991(00)80436-x.

    Article  Google Scholar 

  • Boudali, L. K., Ghorbel, A., & Grange, P. (2009). Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCRNO reaction. Comptes Rendus Chimie, 12, 779–786. DOI: 10.1016/j.crci.2008.11.005.

    Article  Google Scholar 

  • Carriazo, J. G., Moreno-Forero, M., Molina, R. A., & Moreno, S. (2010). Incorporation of titanium—titanium iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50, 401–408. DOI: 10.1016/j.clay.2010.09.007.

    Article  CAS  Google Scholar 

  • Chmielarz, L., Gil, B., KuÅ›trowski, P., Piwowarska, Z., Dudek, B., & Michalik, M. (2009). Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica—titania pillars — synthesis and characterization. Journal of Solid State Chemistry, 182, 1094–1104. DOI: 10.1016/j.jssc.2009.02.017.

    Article  CAS  Google Scholar 

  • Chmielarz, L., Kowalczyk, A., Wojciechowska, M., BoroÅ„, P., Dudek, B., & Michalik, M. (2014). Montmorillonite intercalated with SiO2, SiO2−Al2O3 or SiO2−TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chemical Papers, 68, 1219–1227. DOI: 10.2478/s11696-013-0463-0.

    Article  CAS  Google Scholar 

  • Dali, A., Rekkab-Hammoumraoui, I., Choukchou-Braham, A., & Bachir, R. (2015). Allylic oxidation of cyclohexene over ruthenium-doped titanium-pillared clay. RSC Advances, 5, 29167–29178. DOI: 10.1039/c4ra17129b.

    Article  CAS  Google Scholar 

  • Damardji, B., Khalaf, H., Duclaux, L., & David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst. Part I. Microwave calcination, characterization and adsorption of a textile azo dye. Applied Clay Science, 44, 201–205. DOI: 10.1016/j.clay.2008.12.010.

    Article  CAS  Google Scholar 

  • Del Castillo, H. L., & Grange, P. (1993). Preparation and catalytic activity of titanium pillared montmorillonite. Applied Catalysis A, 103, 23–34. DOI: 10.1016/0926-860x(93)85170-t.

    Article  Google Scholar 

  • Del Castillo, H. L., Gil, A., & Grange, P. (1997). Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites. Journal of Physics and Chemistry of Solids, 58, 1053–1062. DOI: 10.1016/s0022-3697(97)00006-1.

    Article  Google Scholar 

  • Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48, 53–229. DOI: 10.1016/s0167-5729(02)00100-0.

    Article  CAS  Google Scholar 

  • Ding, Z., Kloprogge, J. T., Frost, R. L., Lu, G. Q., & Zhu, H. Y. (2001). Porous clays and pillared clays-based catalysts. Part 2. A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8, 273–293. DOI: 10.1023/a:1013113030912.

    Article  CAS  Google Scholar 

  • Farfan-Torres, E. M., Sham, E., & Grange, P. (1992). Pillared clays: Preparation and characterization of zirconium pillared montmorillonite. Catalysis Today, 15, 515–526. DOI: 10.1016/0920-5861(92)85016-f.

    Article  CAS  Google Scholar 

  • Fechete, I., Wang, Y., & Védrine, J. C. (2012). The past, present and future of heterogeneous catalysis. Catalysis Today, 189, 2–27. DOI: 10.1016/j.cattod.2012.04.003.

    Article  CAS  Google Scholar 

  • Gil, A., Korili, S. A., & Vicente, M. A. (2008). Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catalysis Reviews, 50, 153–221. DOI: 10.1080/01614940802019383.

    Article  CAS  Google Scholar 

  • Gil, A., Korili, S. A., Trujillano, R., & Vicente, M. A. (2011). A review on characterization of pillared clays by specific techniques. Applied Clay Science, 53, 97–105. DOI: 10.1016/j.clay.2010.09.018.

    Article  CAS  Google Scholar 

  • Huang, Q. Q., Zuo, S. F., & Zhou, R. X. (2010). Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogencontaining VOCs. Applied Catalysis B, 95, 327–334. DOI: 10.1016/j.apcatb.2010.01.011.

    Article  CAS  Google Scholar 

  • Jagtap, N., & Ramaswamy, V. (2006). Oxidation of aniline over titania pillared montmorillonite clays. Applied Clay Science, 33, 89–98. DOI: 10.1016/j.clay.2006.04.001.

    Article  CAS  Google Scholar 

  • Kloprogge, J. T. (1998). Synthesis of smectites and porous pillared clay catalysts: A review. Journal of Porous Materials, 5, 5–41. DOI: 10.1023/a:1009625913781.

    Article  CAS  Google Scholar 

  • Lambert, J. F., & Poncelet, G. (1997). Acidity in pillared clays: Origin and catalytic manifestations. Topics in Catalysis, 4, 43–56. DOI: 10.1023/a:1019175803068.

    Article  Google Scholar 

  • Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2004). Characterization of porous solids and powders: Surface area, pore size and density. Dordrecht, The Netherlands, Kluwer. DOI: 10.1007/978-1-4020-2303-3.

    Book  Google Scholar 

  • Ooka, C., Yoshida, H., Suzuki, K., & Hattori, T. (2004). Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67, 143–150. DOI: 10.1016/j.micromeso.2003.10.011.

    Article  CAS  Google Scholar 

  • Rauquerol, F., Rauquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids. London, UK: Academic Press.

    Google Scholar 

  • Shen, B. X., Ma, H. Q., & Yao, Y. (2012). Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature. Journal of Environmental Sciences, 24, 499–506. DOI: 10.1016/s1001-0742(11)60756-0.

    Article  CAS  Google Scholar 

  • Sterte, J. (1986). Synthesis and properties of titanium-oxide cross-linked montmorillonite. Clays and Clay Minerals, 34, 658–664. DOI: 10.1346/ccmn.1986.0340606.

    Article  CAS  Google Scholar 

  • Tomul, F., & Balci, S. (2009). Characterization of Al, Crpillared clays and CO oxidation. Applied Clay Science, 43, 13–20. DOI: 10.1016/j.clay.2008.07.006.

    Article  CAS  Google Scholar 

  • Tomul, F. (2011). Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Applied Surface Science, 258, 1836–1848. DOI: 10.1016/j.apsusc.2011.10.056.

    Article  CAS  Google Scholar 

  • Tomul, F. (2012). Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites. Journal of Nanomaterials, 2012, 1–14. DOI: 10.1155/2012/237853.

    Article  Google Scholar 

  • Valverde, J. L., Sánchez, P., Dorado, F., Asencio, I., & Romero, A. (2003). Preparation and characterization of Tipillared clays using Ti alkoxides. Influence of the synthesis parameters. Clays and Clay Minerals, 51, 41–51. DOI: 10.1346/ccmn.2003.510105.

    Article  CAS  Google Scholar 

  • Yang, R. T., Chen, J. P., Kikkinides, E. S., Cheng, L. S., & Cichanowicz, J. E. (1992). Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia. Industrial & Engineering Chemistry Research, 31, 1440–1445. DOI: 10.1021/ie00006a003.

    Article  CAS  Google Scholar 

  • Yang, S. S., Huang, Q. Q., & Zhou, R. X. (2014). Influence of interactions between chromium and cerium on catalytic performances of CrOx−CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine. Chinese Science Bulletin, 59, 3987–3992. DOI: 10.1007/s11434-014-0531-z.

    Article  CAS  Google Scholar 

  • Zhang, J. X., Zhang, S. L., Cai, W., & Zhong, Q. (2013). The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx. Applied Surface Science, 268, 535–540. DOI: 10.1016/j.apsusc.2012.12.169.

    Article  CAS  Google Scholar 

  • Zhou, J. B., Wu, P. X., Dang, Z., Zhu, N. W., Li, P., Wu, J. H., & Wang, X. D. (2010). Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI) from aqueous solutions. Chemical Engineering Journal, 162, 1035–1044. DOI: 10.1016/j.cej.2010.07.016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Turgut Basoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basoglu, F.T. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite. Chem. Pap. 70, 933–945 (2016). https://doi.org/10.1515/chempap-2016-0026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0026

Keywords

Navigation