Skip to main content

Advertisement

Log in

Recovery of Au(III) ions by Au(III)-imprinted hydrogel

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A new Au(III)-imprinted hydrogel (Au(III)-Imp) was prepared by the photopolymerisation of 4-acryloylmorpholine (AcM), 2-hydroxyethyl acrylate (HEA), and poly(ethylene glycol) diacrylate (cross-linking monomer, PEG-DA) in the presence of gold ions. In addition, non-imprinted hydrogel (N-Imp) was similarly prepared without Au(III) ions The Au(III)-Imp hydrogel was characterised by several techniques. To achieve the optimal conditions, effect of pH, time, and initial metal ion concentrations were investigated using a batch system. The pre-concentration factor for Au(III) ions was found to be at least 100. The analytical parameters of the method were determined and the method was also successfully applied to computer circuit board scrap samples. The reusability of the Au(III)-Imp hydrogel was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, S. J., Noori-Kalkhoran, O., & Shirvani-Arani, S. (2010). Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO+) ions. Journal of Hazardous Materials, 175, 193–197. DOI: 10.1016/j.jhazmat.2009.09.148.

    Article  CAS  Google Scholar 

  • Azevedo Lemos, V., Silva da Franca, R., & Oliveira Moreira, B. (2007). Cloud point extraction for Co and Ni determination in water samples by flame atomic absorption spectrometry. Separation and Purification Technology, 54, 349–354. DOI: 10.1016/j.seppur.2006.10.004.

    Article  Google Scholar 

  • Bagheri, H., Saraji, M., & Naderi, M. (2000). Optimization of a new activated carbon based sorbent for on-line preconcentration and trace determination of nickel in aquatic samples using mixed-level orthogonal array design. Analyst, 125, 1649–1654. DOI: 10.1039/b001454k.

    Article  CAS  Google Scholar 

  • Chand, R., Watari, T., Inoue, K., Kawakita, H., Luitel, H. N., Parajuli, D., Torikai, T., & Yada, M. (2009). Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Minerals Engineering, 22, 1277–1288. DOI: 10.1016/j.mineng.2009.07.007.

    Article  CAS  Google Scholar 

  • Corley, J. (2002). Best practices in establishing detection and quantification limits for pesticide residues in foods. In P. W. Lee (Ed.), Handbook of residue analytical methods for agrochemicals (pp. 59–75). Chichester, UK: Wiley.

    Google Scholar 

  • Cui, J. R., & Zhang, L. F. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158, 228–256. DOI: 10.1016/j.jhazmat.2008.02.001.

    Article  CAS  Google Scholar 

  • Davies, J. A., Hockensmith, C. M., Kukushkin, V. Yu., & Kukushkin, Yu. N. (1997). Synthetic coordination chemistry Principles and practice. Singapore, Singapore: World Scientific Publishing Company.

    Google Scholar 

  • Donia, A. M., Atia, A. A., & Elwakeel, K. Z. (2005). Gold(III) recovery using synthetic chelating resins with-amine, thio and amine/mercaptan functionalities. Separation and Purification Technology, 42, 111–116. DOI: 10.1016/j.seppur.2004.06.009.

    Article  CAS  Google Scholar 

  • Ellis, T. W. (2004) The future of gold in electronics. Gold Bulletine, 37, 66–71. DOI: 10.1007/bf03215518.

    Article  CAS  Google Scholar 

  • Fan, R. Y., Xie, F., Guan, X. L., Zhang, Q. L., & Luo, Z. R. (2014). Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from e-wastes. Bioresource Technology, 163, 167–171. DOI: 10.1016/j.biortech.2014.03.164.

    Article  CAS  Google Scholar 

  • Firlak, M., Kok Yetimoglu, E., Kahraman, M. V., Apohan, N. K., & Deniz, S. (2009). Removal of lead and cadmium ions from aqueous solutions using sulphur and oxygen donor ligand bearing hydrogels. Separation Science and Technology, 45, 116–128. DOI: 10.1080/01496390903256208.

    Article  Google Scholar 

  • Firlak, M., Kahraman, M. V., & Kok Yetimoglu, E. (2012). Preparation and characterization of photocured thiol-ene hydrogel: Adsorption of Au(III) ions from aqueous solutions. Journal of Applied Polymer Science, 126, 322–332. DOI: 10.1002/app.36887.

    Article  CAS  Google Scholar 

  • Firlak, M., Kok Yetimoglu, E., & Kahraman, M. V. (2014). Adsorption of Au(III) ions from aqueous solutions by thiol-ene photoclick hydrogels and its application to electronic waste and geothermal water. Journal of Water Process Engineering, 3, 105–116. DOI: 10.1016/j.jwpe.2014.05.016.

    Article  Google Scholar 

  • Gomes, C. P., Almeida, M. F., & Loureiro, J. M. (2001). Gold recovery with ion exchange used resins. Separation and Purification Technology, 24, 35–57. DOI: 10.1016/s1383-5866(00)00211–2.

    Article  CAS  Google Scholar 

  • Goodman, P. (2002). Current and future uses of gold in electronics. Gold Bulletine, 35, 21–26. DOI: 10.1007/bf03214833.

    Article  CAS  Google Scholar 

  • Haruta, M. (2004). Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletine, 37, 27–36. DOI: 10.1007/bf03215514.

    Article  CAS  Google Scholar 

  • Kavakli, C., Malci, S., Tuncel, S. A., & Salih, B. (2006). Selective adsorption and recovery of precious metal ions from geological samples by 1,5,9,13-tetrathiacyclohexadecane-3,11-diol anchored poly (p-CMS-DVB) microbeads. Reactive and Functional Polymers, 66, 275–285. DOI: 10.1016/j.reactfunctpolym.2005.08.004.

    Article  CAS  Google Scholar 

  • Kawakita, H., Abe, M., Inoue, J. I., Ohto, K., Harada, H., & Inoue, K. (2009). Selective gold recovery using orange waste. Separation Science and Technology, 44, 2797–2805. DOI: 10.1080/01496390903014615.

    Article  CAS  Google Scholar 

  • Liu, Y. H., Cao, X. H., Hua, R., Wang, Y. Q., Liu, Y. T., Pang, C., & Wang, Y. (2010). Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy, 104, 150–155. DOI: 10.1016/j.hydromet.2010. 05.009.

    Article  CAS  Google Scholar 

  • Mansour, F. R., & Danielson, N. D. (2012). Ligand exchange spectrophotometric method for the determination of mole ratio in metal complexes. Microchemical Journal, 103, 74–78. DOI: 10.1016/j.microc.2012.01.008.

    Article  CAS  Google Scholar 

  • Milonjic, S. K. (2007). A consideration of the correct calculation of thermodynamic parameters of adsorption. Journal of the Serbian Chemical Society, 72, 1363–1367. DOI: 10.2298/jsc0712363m.

    Article  CAS  Google Scholar 

  • Monier, M., & Abdel-Latif, D. A. (2013). Synthesis and characterization of ion-imprinted chelating fibers based on PET for selective removal of Hg2+. Chemical Engineering Journal, 221, 452–460. DOI: 10.1016/j.cej.2013.02.003.

    Article  CAS  Google Scholar 

  • MOlazim, Y., Cakmakci, E., & Kahraman, M. V. (2011). Preparation of photo curable highly hydrophobic coatings using a modified castor oil derivative as a sol-gel component. Progress of Organic Coating, 72, 394–401. DOI: 10.1016/j.porgcoat.2011.05.012.

    Article  Google Scholar 

  • Navarro, M. (2009). Gold complexes as potential anti-parasitic agents. Coordination Chemistry Reviews, 253, 1619–1626. DOI: 10.1016/j.ccr.2008.12.003.

    Article  CAS  Google Scholar 

  • O’Brien, A. K., Cramer, N. B., & Bowman, C. N. (2006). Oxygen inhibition in thiol-acrylate photopolymerizations. Journal of Polymer Science Part A: Polymer Chemistry, 44, 2007–2014. DOI: 10.1002/pola.21304.

    Article  Google Scholar 

  • Ogata, T., Kim, Y. H., & Nakano, Y. (2007). Selective recovery process for gold utilizing a functional gel derived from natural condensed tannin. Journal of Chemical Engineering of Japan, 40, 270–274. DOI: 10.1252/jcej.40.270.

    Article  CAS  Google Scholar 

  • Pangeni, B., Paudyal, H., Abe, M., Inoue, K., Kawakita, H., Ohto, K., Adhikari, B. B., & Alam, S. (2012). Selective recovery of gold using some cross-linked polysaccharide gels. Green Chemistry, 14, 1917–1927. DOI: 10.1039/c2gc35321k.

    Article  CAS  Google Scholar 

  • Pant, D., Joshi, D., Upreti, M. K., & Kotnala, R. K. (2012). Chemical and biological extraction of metals present in E waste, A hybrid technology. Waste Management, 32, 979–990. DOI: 10.1016/j.wasman.2011.12.002.

    Article  CAS  Google Scholar 

  • Prasada Rao, T., Kala, R., & Daniel, S. (2006). Metal ion-imprinted polymers—Novel materials for selective recognition of inorganics. Analytica Chimica Acta, 578, 105–116. DOI: 10.1016/j.aca.2006.06.065.

    Article  Google Scholar 

  • Pu, Q. S., Su, Z. X., Hu, Z. D., Chang, X. J., & Yang, M. (1998). 2-Mercaptobenzothiazole-bonded silica gel as selective adsorbent for preconcentration of gold, platinum and palladium prior to their simultaneous inductively coupled plasma optical emission spectrometric determination. Journal of Analytical Atomic Spectrometry, 13, 249–253. DOI: 10.1039/a705786e.

    Article  CAS  Google Scholar 

  • Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., & Ueda, K. (2008). Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 99, 3801–3809. DOI: 10.1016/j.biortech.2007.07.008.

    Article  CAS  Google Scholar 

  • Rivas, B. L., Villegas, S., & Ruf, B. (2006). Water-insoluble polymers containing amine, sulfonic acid, and carboxylic acid groups: Synthesis, characterization, and metal-ion-retention properties. Journal of Applied Polymer Science, 99, 3266–3274. DOI: 10.1002/app.22781.

    Article  CAS  Google Scholar 

  • Rumi, C., Takanori, W., Katsutoshi, I., Kawakita, H., Luitel, H. N., Parajuli, D., Torikai, T., & Yada, M. (2009). Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Mineral Engineering, 22, 1277–1282. DOI: 10.1016/j.mineng.2009.07.007.

    Article  Google Scholar 

  • Sahiner, N., Karakoyun, N., Sahan, T., Butun, S., & Aktas, N. (2013). Reusable soft hydrogels for gold recovery from acidic environments. Separation Science and Technology, 48, 805–812. DOI: 10.1080/01496395.2012.710704.

    Article  CAS  Google Scholar 

  • Saraji, M., & Yousefi, H. (2009). Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. Journal of Hazardous Materials, 167, 1152–1157. DOI: 10.1016/j.jhazmat.2009.01.111.

    Article  CAS  Google Scholar 

  • Sheng, P. P., & Etsell, T. H. (2007). Recovery of gold from computer circuit board scrap using aqua regia. Waste Management and Research, 25, 380–383. DOI: 10.1177/0734242x0 7076946.

    Article  CAS  Google Scholar 

  • Soleimani, M., & Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones — An agricultural waste. Bioresource Technology, 99, 5374–5383. DOI: 10.1016/j.biortech.2007.11.021.

    Article  CAS  Google Scholar 

  • Soylak, M., & Akkaya, Y. (2005). Separation/preconcentration of xylenol orange metal complexes on Amberlite XAD-16 column for their determination by flame atomic absorption spectrometry. Journal of Trace Microprobe Techniques, 21, 455–466. DOI: 10.1081/tma-120023062.

    Article  Google Scholar 

  • Syed, S. (2012). Recovery of gold from secondary sources—A review. Hydrometallurgy, 115–116, 30–51. DOI: 10.1016/j. hydromet.2011.12.012.

    Google Scholar 

  • Tokuyama, H., & Kanehara, A. (2007). Temperature swing adsorption of gold(III) ions on poly(N-isopropylacrylamide) gel. Reactive and Functional Polymers, 67, 136–143. DOI: 10.1016/j.reactfunctpolym.2006.10.006.

    Article  CAS  Google Scholar 

  • Tuzen, M., Saygi, K. O., & Soylak, M. (2008). Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. Journal of Hazardous Materials, 152, 632–639. DOI: 10.1016/j.jhazmat.2007.07.026.

    Article  CAS  Google Scholar 

  • Wang, H. F., Bao, C. L., Li, F., Kong, X. F., & Xu, J. J. (2010). Preparation and application of 4-amino-4/-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Microchimica Acta, 168, 99–105. DOI: 10.1007/s00604–009–0265–9.

    Article  CAS  Google Scholar 

  • Xu, S. F., Chen, L. X., Li, J. H., Guan, Y. F., & Lu, H. Z. (2012). Novel Hg2+-imprinted polymers based on thymine-Hg2+-thymine interaction for highly selective preconcentration of Hg2+ in water samples. Journal of Hazardous Materials, 237–238, 347–354. DOI: 10.1016/j.jhazmat.2012.08.058.

    Article  Google Scholar 

  • Yin, P., Xu, M. Y., Liu, W., Qu, R. J., Liu, X. G., & Xu, Q. (2014). High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene. Journal of Industrial Engineering Chemistry, 20, 379–390. DOI: 10.1016/j.jiec.2013.04.032.

    Article  CAS  Google Scholar 

  • Zhang, L., Yang, S. W., Zhong, L. L., Ma, C. L., Zhou, Y. Z., & Han, X. L. (2012). Improvement of Ag(I) adsorption onto chitosan/triethanolamine composite sorbent by an ion-imprinted technology. Applied Surface Science, 263, 696–703. DOI: 10.1016/j.apsusc.2012.09.143.

    Article  CAS  Google Scholar 

  • Zhao, F., Yu, B. Y., Yue, Z. R., Wang, T., Wen, X., Liu, Z. B., & Zhao C. S. (2007). Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal of Hazardous Materials, 147, 67–73. DOI: 10.1016/j.jhazmat.2006.12.045.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Fırlak.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fırlak, M., Çubuk, S., Yetimoğlu, E.K. et al. Recovery of Au(III) ions by Au(III)-imprinted hydrogel. Chem. Pap. 70, 757–768 (2016). https://doi.org/10.1515/chempap-2016-0019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0019

Keywords

Navigation