Chemical Papers

, Volume 70, Issue 6, pp 769–776 | Cite as

Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst

  • Zi-Xia Li
  • Wei Sun
  • Shun-Qin Liang
  • Huan-Ling Song
Original Paper


A presulphided treatment was applied to the oxidic Ni-Mo-Zn/Al2O3 catalyst (nickel catalyst) in order to avoid thermal run-away during initiation of the hydrogenation of pyrolysis gasoline. The physico-chemical properties of the prepared oxidic nickel catalyst, the reduced and passivated (RP) nickel catalyst and the sulphided (RPS) nickel catalyst were characterised using N2 adsorption-desorption, X-ray diffraction, temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The TPR results showed that the reducibility of the RP Ni-Mo-Zn/Al2O3 catalyst was improved over the oxidic nickel catalyst. The XPS spectra confirmed the binding energy of the RPS nickel catalyst to be higher than that of the oxidic nickel catalyst. The catalytic performance was evaluated on a fixed-bed reactor (reaction temperature between 30 °C and 70°C, at 2.8 MPa of total pressure and weight hourly space velocity of 2.0 h−1, the volume of H2/pyrogasoline = 200: 1). The rising temperature of the RPS nickel catalyst was almost 20°C lower than that of the oxidic nickel catalyst during the initial stage of the hydrogenation reaction. The results indicated that the RPS nickel catalyst exhibited better stability than the oxidic nickel catalyst during the start-up period, thereby providing a better selectivity in long-term operation.


nickel catalyst presulphided pyrolysis gasoline reduction and passivation selective hydrogenation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cheng, Y. M., Chang, J. R., & Wu, J. C. (1986). Kinetic study of pyrolysis gasoline hydrogenation over supported palladium catalyst. Applied Catalysis, 24, 273—285. DOI: 10.1016/s0166–9834(00)81275–0.Google Scholar
  2. Garbarino, G., Campodonico, S., Perez, A. R., Carnasciali, M. M., Riani, P., Finocchio, E., & Busca, G. (2013). Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables. Applied Catalysis A, 452, 163–173. DOI: 10.1016/j.apcata.2012.10.039.CrossRefGoogle Scholar
  3. Gaspar, A. B., dos Santos, G. R., Costa, R. S., & da Silva, M. A. P. (2008). Hydrogenation of synthetic PYGAS-effects of zirconia on Pd/Al2O3. Catalysis Today, 133–135, 400–405. DOI: 10.1016/j.cattod.2007.12.058.CrossRefGoogle Scholar
  4. Ge, H., Li, X. K., Wang, G. F., Qin, Z. F., Li, Z. J., & Wang, J. G. (2010). Presulfidation of CoMo and NiMoP catalysts by ammonium thiosulfate. Chinese Journal of Catalysis, 31, 18–20. DOI: 10.1016/s1872–2067(09)60035–8.CrossRefGoogle Scholar
  5. Hoffer, B. W., van Langeveld, A. D., Janssens, J. P., Bonne, R. L. C., Lok, C. M., & Moulijn, J. A. (2000). Stability of high dispersed Ni/AlO catalysts: Effects of pretreatment. Journal of Catalysis, 192, 432–440. DOI: 10.1006/jcat.2000.2867.CrossRefGoogle Scholar
  6. Hoffer, B. W., Devred, F., Kooyman, P. J., van Langeveld, A. D., Bonne, R. L. C., Griffiths, C., Lok, C. M., & Moulijn, J. A. (2002). Characterization of ex situ presulfided Ni/Al2O3 catalysts for pyrolysis gasoline hydrogenation. Journal of Catalysis, 209, 245–255. DOI: 10.1006/jcat.2002.3633.CrossRefGoogle Scholar
  7. Hoffer, B. W., Bonne, R. L. C., van Langeveld, A. D., Griffiths, C., Lok, C. M., & Moulijn, J. A. (2004). Enhancing the startup of pyrolysis gasoline hydrogenation reactors by applying tailored ex situ presulfided Ni/Al2O3 catalysts. Fuel, 83, 1–8. DOI: 10.1016/s0016–2361(03)00210–2.CrossRefGoogle Scholar
  8. Kim, K. S., & Davis, R. E. (1972–1973). Electron spectroscopy of the nickel-oxygen system. Journal of Electron Spectroscopy and Related Phenomena, 1, 251–258. DOI: 10.1016/0368–2048(72)85014-x.CrossRefGoogle Scholar
  9. L’Argentiere, P. C., Liprandi, D. A., & Figoli, N. S. (1995). Regeneration of Ni/Al2O3 poisoned by thiophene during the selective hydrogenation of styrene. Industrial & Engineering Chemistry Research, 34, 3713–3717. DOI: 10.1021/ie00038a006.CrossRefGoogle Scholar
  10. Lin, T. B., & Chou, T. C. (1994). Selective hydrogenation of isoprene on eggshell and uniform palladium profile catalysts. Applied Catalysis A, 108, 7–19. DOI: 10.1016/0926- 860x(94)85176-x.CrossRefGoogle Scholar
  11. Mangnus, P. J., Poels, E. K., van Langeveld, A. D., & Moulijn, J. A. (1992). Comparison of the sulfiding rate and mechanism of supported NiO and Ni0 particles. Journal of Catalysis, 137, 92–101. DOI: 10.1016/0021–9517(92)90141–4.CrossRefGoogle Scholar
  12. Metaxas, K. C., & Papayannakos, N. G. (2008). Studying the internal mass transfer phenomena inside a Ni/Al2O3 catalyst for benzene hydrogenation. Chemical Engineering Journal, 140, 352–357. DOI: 10.1016/j.cej.2007.10.010.CrossRefGoogle Scholar
  13. Poels, E. K., van Beek, W. P., den Hoed, W., & Visser, C. (1995). Deactivation of fixed-bed nickel hydrogenation catalysts by sulfur. Fuel, 74, 1800–1805. DOI: 10.1016/0016-2361(95)80011–6.CrossRefGoogle Scholar
  14. Qian, Y., Liang, S. Q., Wang, T. H., Wang, Z. B., Xie, W., & Xu, X. L. (2011). Enhancement of pyrolysis gasoline hydrogenation over Zn-and Mo-promoted Ni/7-Al2O3 catalysts. Catalysis Communication, 12, 851–853. DOI: 10.1016/j.catcom.2011.02.006.CrossRefGoogle Scholar
  15. Reddy, K. M., Pokhriyal, S. K., Ratnasamy, P., & Sivasanker, S. (1992). Reforming of pyrolysis gasoline over platinum-alumina catalysts containing MFI type zeolites. Applied Catalysis A, 83, 1–13. DOI: 10.1016/0926–860x(92)80021–4.CrossRefGoogle Scholar
  16. Ringelhan, C., Burgfels, G., Neumayr, J. G., Seuffert, W., Klose, J., & Kurth, V. (2004). Conversion of naphthenes to a high value steamcracker feedstock using H-ZSM-5 based catalysts in the second step of the ARINO®-process. Catalysis Today, 97, 277–282. DOI: 10.1016/j.cattod.2004.07.004.CrossRefGoogle Scholar
  17. Savva, P. G., Goundani, K., Vakros, J., Bourikas, K., Fountzoula, C., Vattis, D., Lycourghiotis, A., & Kordulis, C. (2008). Benzene hydrogenation over Ni/Al2O3 catalysts prepare by conventional and sol-gel techniques. Applied Catalysis B, 79, 199–207. DOI: 10.1016/j.apcatb.2007.10.023.CrossRefGoogle Scholar
  18. Scheffer, B., Molhoek, P., & Moulijn, J. A. (1989). Temperature-programmed reduction of NiO-WO3/Al2O3 hydrodesulphurization catalysts. Appied Catalysis, 46, 11–30. DOI: 10.1016/s0166–9834(00)81391–3.CrossRefGoogle Scholar
  19. Silvestre-Albero, J., Rupprechter, G., & Freund, H. J. (2006). Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/Ni(110) model catalysts: Effect of Pd particle size. Journal of Catalysis, 240, 58–65. DOI: 10.1016/j.jcat.2006.02.024.CrossRefGoogle Scholar
  20. Westerterp, K. R., & Kronberg, A. E. (2002). How to prevent runaways in trickle-bed reactors for pygas hydrogenation. Chemical Engineering & Technology, 25, 595–601. DOI: 10.1002/1521–4125(200206)25:6<595::aid-ceat595>; 2–1.CrossRefGoogle Scholar
  21. Zhou, Z. M., Zeng, T. Y., Cheng, Z. M., & Yuan, W. K. (2010).. Industrial & Engineering Chemistry Research, 49, 11112–11118. DOI: 10.1021/ie1003043.CrossRefGoogle Scholar
  22. Zhu, J. H., Cheng, Y. L., Tang, K. J., Wang, L. M., Li, S. Q., & Yang, W. M. (2012). Synthesis of Ni-Mo and Co-Mo-Ni nano-sulfides and their stable catalysis on complicated full-ranged pyrolysis gasoline hydrorefinery. RSC Advances, 2, 8957–8961. DOI: 10.1039/c2ra20953e.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Zi-Xia Li
    • 1
    • 2
    • 3
  • Wei Sun
    • 1
  • Shun-Qin Liang
    • 3
  • Huan-Ling Song
    • 1
  1. 1.State Key laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Lanzhou Petrochemical Research Center of PetrochinaHeshui North Road, No. 1LanzhouChina

Personalised recommendations