Skip to main content
Log in

Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study reports the fabrication of an amperometric cholesterol biosensor based on cholesterol oxidase (ChOx), SnO2NPs and Nafion-modified carbon paste enzyme electrodes (CPE/SnO2NPs-ChOx/Naf). The electrochemical characterisations of BCPE and CPE/SnO2NPs were performed using CV and EIS. The determination of cholesterol was carried out by electrochemical oxidation of H2O2 at 0.6 V vs. Ag/AgCl. The CPE/SnO2NPs-ChOx/Naf presented a linear range from 0.20 μ.mol L−1 to 4.95 μmol L−1 with a low limit of detection (0.04 μ.mol L−1). In addition, the optimal values for pH and temperature were found to be 7.5 and 35°C, respectively. The CPE/SnO2NPs-ChOx/Naf was used for the determination of cholesterol in serum samples and good results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M., Pan, C. F., Gan, L., Nawaz, Z., & Zhu, J. (2010). Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. The Journal of Physical Chemistry C, 114, 243–250. DOI: 10.1021/jp9089497.

    Article  CAS  Google Scholar 

  • Albuquerque, T. G., Oliveira, M. B. P. P., Sanches-Silva, A., & Costa, H. S. (2016). Cholesterol determination in foods: Comparison between high performance and ultra-high performance liquid chromatography. Food Chemistry, 193, 18–25. DOI: 10.1016/j.foodchem.2014.09.109.

    Article  CAS  Google Scholar 

  • Ansari, A. A., Kaushik, A., Solanki, P. R., & Malhotra, B. D. (2008). Solgel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 10, 1246–1249. DOI: 10.1016/j.elecom.2008.06.003.

    Article  CAS  Google Scholar 

  • Ansari, A. A., Kaushik, A., Solanki, P. R., & Malhotra, B. D. (2009). Electrochemical cholesterol sensor based on tin oxide-chitosan nanobiocomposite film. Electroanalysis, 21, 965–972. DOI: 10.1002/elan.200804499.

    Article  CAS  Google Scholar 

  • Aravind, S. S. J., Baby, T. T., Arockiadoss, T., Rakhi, R. B., & Ramaprabhu, S. (2011). A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets. Thin Solid Films, 519, 5667–5672. DOI: 10.1016/j.tsf.2011.03.032.

    Article  CAS  Google Scholar 

  • Arya, S. K., Datta, M., & Malhotra, B. D. (2008). Recent advances in cholesterol biosensor. Biosensors and Bioelectronics, 23, 1083–1100. DOI: 10.1016/j.bios.2007.10.018.

    Article  CAS  Google Scholar 

  • Aydogdu, G., Zeybek, D. K., Zeybek, B., & Pekyardimci, S. (2013). Electrochemical sensing of NADH on NiO nano- particles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. Journal of Applied Electrochemistry, 43, 523–531. DOI: 10.1007/s10800-013–0536–3.

    Article  CAS  Google Scholar 

  • Ballesta-Claver, J., Ametis-Cabello, J., Morales-Sanfrutos, J., Megia-Fernandez, A., Valencia-Miron, M. C., Santoyo-Gonzalez, F., & Capitan-Vallvey, L. F. (2012). Electrochemilu-minescent disposable cholesterol biosensor based on avidin- biotin assembling with the electroformed luminescent conducting polymer poly(luminol-biotinylated pyrrole). Analytica Chimica Acta, 754, 91–98. DOI: 10.1016/j.aca.2012.10.006.

    Article  CAS  Google Scholar 

  • Bard, A. J., & Faulkner, L. R. (2000). Electrochemical methods: Fundamentals and applications. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Batra, N., Tomar, M., & Gupta, V. (2015). ZnO-CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosensors and Bioelectronics, 67, 263–271. DOI: 10.1016/j.bios.2014.08.029.

    Article  CAS  Google Scholar 

  • Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2001). Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole-hydrogel membrane. Analytica Chimica Acta, 448, 27–36. DOI: 10.1016/s0003–2670(01)01321–6.

    Article  CAS  Google Scholar 

  • Cai, X., Gao, X., Wang, L., Wu, Q., & Lin, X. (2013). A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors and Actuators B: Chemical, 181, 575–583. DOI: 10.1016/j.snb.2013.02.050.

    Article  CAS  Google Scholar 

  • Charpentier, L., & El Murr, N. (1995). Amperometric determination of cholesterol in serum with use of a renewable surface peroxidase electrode. Analytica Chimica Acta, 318, 89–93. DOI: 10.1016/0003–2670(95)00311–8.

    Article  CAS  Google Scholar 

  • Choi, Y. J., Hwang, I. S., Park, J. G., Choi, K. J., Park, J. H., & Lee, J. H. (2008). Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology, 19, 095508. DOI: 10.1088/0957–4484/19/9/095508.

    Article  Google Scholar 

  • Dey, R. S., & Raj, C. R. (2010). Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. The Journal of Physical Chemistry C, 114, 21427–21433. DOI: 10.1021/jp105895a.

    Article  CAS  Google Scholar 

  • Dezfuli, A. S., Ganjali, M. R., Norouzi, P., & Faridbod, F. (2015). Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. Journal of Materials Chemistry B, 3, 2362–2370. DOI: 10.1039/c4tb01 847h.

    Article  CAS  Google Scholar 

  • Dimcheva, N. D., & Horozova, E. G. (2015). Electrochemical enzymatic biosensors based on metal micro-/nanoparticles- modified electrodes: a review. Chemical Papers, 69, 17–26. DOI: 10.1515/chempap-2015–0011.

    Article  CAS  Google Scholar 

  • Ensafi, A. A., Rezaei, B., Amini, M., & Heydari-Bafrooei, E. (2012). A novel sensitive DNA-biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods. Talanta, 88, 244–251. DOI: 10.1016/j.talanta.2011.10.038.

    Article  CAS  Google Scholar 

  • Gopalan, A. I., Lee, K. P., & Ragupathy, D. (2009). Development of a stable cholesterol biosensor based on multiwalled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Biosensors and Bioelectronics, 24, 2211–2217. DOI: 10.1016/j.bios.2008.11.034.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Norouzi, P., Ganjali, H., Faridbod, F., & Ganjali, M. R. (2013). Flow injection analysis of cholesterol using FFT admittance voltammetric biosensor based on MWCNTZnO nanoparticles. Electrochimica Acta, 100, 29–34. DOI: 10.1016/j.electacta.2013.03.118.

    Article  CAS  Google Scholar 

  • Jia, N. Q., Xu, J., Sun, M. H., & Jiang, Z. Y. (2005). A mediatorless hydrogen peroxide biosensor based on horseradish peroxidase immobilized in tin oxide sol-gel Film. Analytical Letters, 38, 1237–1248. DOI: 10.1081/al-200060889.

    Article  CAS  Google Scholar 

  • Karube, I., Hara, K., Matsuoka, H., & Suzuki, S. (1982). Amperometric determination of total cholesterol in serum with use of immobilized cholesterol esterase and cholesterol oxidase. Analytica Chimica Acta, 139, 127–132. DOI: 10.1016/s0003-2670(01)93990-x.

    Article  CAS  Google Scholar 

  • Khan, R., Kaushik, A., Solanki, P. R., Ansari, A. A., Pandey, M. K., & Malhotra, B. D. (2008). Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Analytica Chimica Acta, 616, 207–213. DOI: 10.1016/j.aca.2008.04.010.

    Article  CAS  Google Scholar 

  • Krug, A., Gobel, R., & Kellner, R. (1994). Flow-injection analysis for total cholesterol with photometric detection. Analytica Chimica Acta, 87, 59–64. DOI: 10.1016/0003-2670(94)85101–8.

    Article  Google Scholar 

  • Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., & Hayakawa, Y. (2013). Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst, 138, 2061–2067. DOI: 10.1039/c3an36754a.

    Article  CAS  Google Scholar 

  • Leite, E. R., Weber, I. T., Longo, E., & Varela, J. A. (2000). A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Advanced Materials, 12, 965–968. DOI: 10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2–7.

    Article  CAS  Google Scholar 

  • Li, G., Liao, J. M., Hu, G. Q., Ma, N. Z., & Wu, P. J. (2005). Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosensors and Bioelectronics, 20, 2140–2144. DOI: 10.1016/j.bios.2004.09.005.

    Article  CAS  Google Scholar 

  • Lim, H. N., Nurzulaikha, R., Harrison, I., Lim, S. S., Tan, W. T., Yeo, M. C., Yarmo, M. A., & Huang, N. M. (2012). Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene. Ceramics International, 38, 4209–4216. DOI: 10.1016/j.ceramint.2012.02.004.

    Article  CAS  Google Scholar 

  • Liu, J., Li, Y., Huang, X., & Zhu, Z. (2010). Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor. Nanoscale Research Letters, 5, 1177–1181. DOI: 10.1007/s11671–010–9622–1.

    Article  CAS  Google Scholar 

  • Mahadeva, S. K., & Kim, J. (2011). Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046.

    Article  CAS  Google Scholar 

  • Malhotra, B. D., & Kaushik, A. (2009). Metal oxide-chitosan based nanocomposite for cholesterol biosensor. Thin Solid Films, 518, 614–620. DOI: 10.1016/j.tsf.2009.07.036.

    Article  CAS  Google Scholar 

  • Manjunatha, R., Shivappa Suresh, G., Savio Melo, J., D’Souza, S. F., & Venkatarangaiah Venkatesha, T. (2012). An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta, 99, 302–309. DOI: 10.1016/j.talanta.2012.05.056.

    Article  CAS  Google Scholar 

  • Moradi, N., Mousavi, M. F., Mehrgardi, M. A., & Noori, A. (2013). Preparation of a new electrochemical biosensor for single base mismatch detection in DNA. Analytical Methods, 5, 6531–6538. DOI: 10.1039/c3ay40871j.

    Article  CAS  Google Scholar 

  • Myung, Y., Jang, D. M., Cho, Y. J., Kim, H. S., Park, J., Kim, J. U., Choi, Y., & Lee, C. J. (2009). Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. The Journal of Physical Chemistry C, 113, 1251–1259. DOI: 10.1021/jp806633j.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Li, X. B., Kim, J., Lim, B. O., Ahammad, A. J. S., & Lee, J. J. (2014). A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators B: Chemical, 202, 536–542. DOI: 10.1016/j.snb.2014.05.114.

    Article  CAS  Google Scholar 

  • Retna Raj, C., & Ohsaka, T. (2003). Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. Journal of Electroanalytical Chemistry, 540, 69–77. DOI: 10.1016/s0022–0728(02)01285–8.

    Article  CAS  Google Scholar 

  • Safavi, A., & Farjami, F. (2011). Electrodeposition of gold- platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperomet- ric cholesterol biosensor. Biosensors and Bioelectronics, 26, 2547–2552. DOI: 10.1016/j.bios.2010.11.002.

    Article  CAS  Google Scholar 

  • Salimi, A., Hallaj, R., & Soltanian, S. (2009). Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis, 21, 2693–2700. DOI: 10.1002/elan.200900229.

    Article  CAS  Google Scholar 

  • Shen, G., Chen, P. C., Ryu, K., & Zhou, C. (2009). Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 19, 828–839. DOI: 10.1039/b816543b.

    Article  CAS  Google Scholar 

  • Singh, S. P., Arya, S. K., Pandey, P., Malhotra, B. D., Saha, S., Sreenivas, K., & Gupta, V. (2007). Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Applied Physics Letters, 91, 063–901. DOI: 10.1063/1.2768302.

    Google Scholar 

  • Singh, J., Kalita, P., Singh, M. K., & Malhotra, B. D. (2011). Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Applied Physics Letters, 98, 123–702. DOI: 10.1063/1.3553765.

    Google Scholar 

  • Soylemez, S., Kanik, F. E., Nurioglu, A. G., Akpinar, H., & Toppare, L. (2013). A novel conducting copolymer: Investigation of its matrix properties for cholesterol biosensor applications. Sensors and Actuators B: Chemical, 182, 322–329. DOI: 10.1016/j.snb.2013.03.009.

    Article  CAS  Google Scholar 

  • Sumner, J. B., & Somers, G. F. (1953). Esterases. In J. B. S. F. Somers (Ed.), Chemistry and methods of enzymes (3rd ed., pp. 68–105). Waltham, MA, USA: Academic Press.

    Chapter  Google Scholar 

  • Sun, D., Zhao, Q., Tan, F., Wang, X., & Gao, J. (2012). Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nanotubes/carbon paste electrode. Analytical Methods, 4, 3283–3289. DOI: 10.1039/c2ay25401h.

    Article  CAS  Google Scholar 

  • Tan, X., Li, M., Cai, P., Luo, L., & Zou, X. (2005). An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Analytical Biochemistry, 337, 111–120. DOI: 10.1016/j.ab.2004.10.040.

    Article  CAS  Google Scholar 

  • Tennakone, K., Perera, V. P. S., Kottegoda, I. R. M., De Silva, L. A. A., Kumara, G. R. R. A., & Konno, A. (2001). Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. Journal of Electronic Materials, 30, 992–996. DOI: 10.1007/bf02657723.

    Article  CAS  Google Scholar 

  • Türkarslan, O., Kayahan, S. K., & Toppare, L. (2009). A new amperometric cholesterol biosensor based on poly(3,4- ethylenedioxypyrrole). Sensors and Actuators B: Chemical, 136, 484–488. DOI: 10.1016/j.snb.2008.10.016.

    Article  Google Scholar 

  • Umar, A., Rahman, M. M., Al-Hajry, A., & Hahn, Y. B. (2009a). Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta, 78, 284–289. DOI: 10.1016/j.talanta.2008.11.018.

    Article  CAS  Google Scholar 

  • Umar, A., Rahman, M. M., Vaseem, M., & Hahn, Y. B. (2009b). Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11, 118–121. DOI: 10.1016/j.elecom.2008.10.046.

    Article  CAS  Google Scholar 

  • Wang, J. (2006). Study of electrode reactions and interfacial properties. In J. Wang (Ed.), Analytical electrochemistry (pp. 29–66). Hoboken, NJ, USA: John Wiley & Sons. DOI: 10.1002/0471790303.ch2.

    Chapter  Google Scholar 

  • Wen, Z., Wang, Q., Zhang, Q., & Li, J. (2007). In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Advanced Functional Materials, 17, 2772–2778. DOI: 10.1002/adfm.200600739.

    Article  CAS  Google Scholar 

  • Yin, X. M., Li, C. C., Zhang, M., Hao, Q. Y., Liu, S., Chen, L. B., & Wang, T. H. (2010). One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. The Journal of Physical Chemistry C, 114, 8084–8088. DOI: 10.1021/jp100224x.

    Article  CAS  Google Scholar 

  • Zeybek, D. K., Zeybek, B., Pekmez, N. O., Pekyardimci, S., & Kilic, E. (2012). Development of an amperometric enzyme electrode based on poly(o-phenylenediamine) for the determination of total cholesterol in serum. Journal of the Brazilian Chemical Society, 23, 2222–2231. DOI: 10.1590/s0103-50532012001200011.

    CAS  Google Scholar 

  • Zhang, F. F., Wang, X. L., Li, C. X., Li, X. H., Wan, Q., Xian, Y. Z., Yamamoto, K. (2005). Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide. Analytical and Bioanalytical Chemistry, 382, 1368–1373. DOI: 10.1007/s00216–005–3290–5.

    Article  CAS  Google Scholar 

  • Zhang, H. X., Feng, C., Zhai, Y. C., Jiang, K. L., Li, Q. Q., & Fan, S. S. (2009). Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithiumion batteries. Advanced Materials, 21, 2299–2304. DOI: 10.1002/adma.200802290.

    Article  CAS  Google Scholar 

  • Zhu, L., Xu, L., Tan, L., Tan, H., Yang, S., & Yao, S. (2013). Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta, 106, 192–199. DOI: 10.1016/j.talanta.2012.12.036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gözde Aydoğdu Tığ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tığ, G.A., Zeybek, D.K. & Pekyardımcı, Ş. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode. Chem. Pap. 70, 695–705 (2016). https://doi.org/10.1515/chempap-2016-0005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0005

Keywords

Navigation