Skip to main content

Advertisement

Log in

Design of extractive distillation process with mixed entrainer

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The separation of two systems containing minimum boiling azeotropes (acetone—methanol and tetrahydrofuran (THF)—water) was performed using extractive distillation with a heavy boiling mixed entrainer consisting of two compounds. The entrainer constituents did not form new azeotropes with each other and with the components of the original mixture. An analysis of the mixed entrainer influence on the vapor-liquid equilibrium (VLE) and relative volatility provides an understanding of the cases in which the separation by extractive distillation (ED) in the presence of the mixed entrainer revealed energy benefits over their individual constituents. New results for application of the mixed entrainer monoethanolamine (MEA)—ethylene glycol (EG) and dimethyl-sulphoxide (DMSO)—glycerol for the separation of THF—water and acetone—methanol, respectively, are presented for the first time. The individual selective agents were chosen from the efficient entrainers discussed in the literature. The calculations were performed using the platform Aspen Plus 7.3. Different extractive distillation flowsheets are provided for the zeotropic mixed agents, viz. with two or three columns. For the ED of the binary mixtures investigated, the structures of the different separation schemes, the operating parameters of the columns, and the energy consumptions are presented and compared. The application of the mixed entrainer MEA—EG fed into the ED column with pre-mixing can be recommended, providing up to 1.7 % of energy saving for acetone—methanol separation. In the case of THF—water, the mixed entrainer DMSO—glycerol provides 0.8 % of energy saving. The separate inputs of the individual constituents of the mixed entrainer led to a significant increase in the energy consumptions of the flowsheet because of the third regeneration column, hence this flowsheet cannot be recommended for use in the separation of both mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, L., & Yeh, A. I. (1984). The separation of isopropyl ether from methyl ethyl ketone by extractive distillation. Chemical Engineering Communications, 29, 283–289. DOI: 10.1080/00986448408940163.

    Article  CAS  Google Scholar 

  • Berg, L., Yeh, A. I., & Ratanapupech, P. (1985). The recovery of ethyl acetate by extractive distillation. Chemical Engineering Communications, 39, 193–199. DOI: 10.1080/00986448508911670.

    Article  CAS  Google Scholar 

  • Berg, L., Vosburgh, M. G., Christensen, R.W., & Shanahan, M. J. (1988). The separation of lower boiling alcohols by extractive distillation. Chemical Engineering Communications, 66, 1–21. DOI: 10.1080/00986448808940257.

    Article  CAS  Google Scholar 

  • Berg, L., Szabados, R. J., Wendt, K. M., & Yeh, A. I. (1990). The dehydration of the lower fatty acids by extractive distillation. Chemical Engineering Communications, 89, 113–131. DOI: 10.1080/00986449008940563.

    Article  CAS  Google Scholar 

  • Gao, X., Li, X. G., & Li, H. (2010). Hydrolysis of methyl acetate via catalytic distillation: Simulation and design of new technological process. Chemical Engineering and Processing: Process Intensification, 49, 1267–1276. DOI: 10.1016/j.cep.2010.09.015.

    Article  CAS  Google Scholar 

  • Gao, X., Wang, F. Z., Li, H., & Li, X. G. (2014). Heatintegrated reactive distillation process for TAME synthesis. Separation and Purification Technology, 132, 468–478. DOI: 10.1016/j.seppur.2014.06.003.

    Article  CAS  Google Scholar 

  • Gil, I. D., García, L. C., & Rodríguez, G. (2014). Simulation of ethanol extractive distillation with mixed glycols as separating agent. Brazilian Journal of Chemical Engineering, 31, 259–270. DOI: 10.1590/s0104-66322014000100024.

    Article  CAS  Google Scholar 

  • Gmehling, J., & Kleiber, M. (2014). Vapor—liquid equilibrium and physical properties for distillation. In A. Górak, & E. Sorensen (Eds.), Distillation: Fundamentals and principles (pp. 45–95). London, UK: Academic Press. DOI: 10.1016/b978-0-12-386547-2.00002-8.

    Chapter  Google Scholar 

  • Gómez, P. A., & Gil, I. D. (2009). Simulation of the tetrahydrofuran dehydration process by extractive distillation. Latin American Applied Research, 39, 275–284.

    Google Scholar 

  • Harris, R. A., Ramjugernath, D., Letcher, T. M., & Raal, J. D. (2002). Monoethanolamine as an extractive solvent for the n-hexane + benzene, cyclohexane + ethanol, and acetone + methanol binary systems. Journal of Chemical & Engineering Data, 4, 781–787. DOI: 10.1021/je010240+.

    Article  Google Scholar 

  • Jarvelin, H., & Fair, J. R. (1993). Adsorptive separation of propylene—propane mixtures. Industrial & Engineering Chemistry Research, 32, 2201–2207. DOI: 10.1021/ie00022a001.

    Article  CAS  Google Scholar 

  • Kirk, R. E., & Othmer, D. F. (2007). Kirk-Othmer encylopedia of chemical technology (5th ed., Vol. 8). New York, NY, USA: Wiley-Interscience.

  • Koczka, K., Maczinger, J., Mizsey, P., & Fonyo, Z. (2007). Novel hybrid separation processes based on pervaporation for THF recovery. Chemical Engineering and Processing Process Intensification, 46, 239–246. DOI: 10.1016/j.cep.2006.05.016.

    Article  CAS  Google Scholar 

  • Lei, Z. G., Li, C. Y., & Chen, B. H. (2003). Extractive distillation: A review. Separation & Purification Reviews, 32, 121–213. DOI: 10.1081/spm-120026627.

    Article  CAS  Google Scholar 

  • Liao, B., Lei, Z. G., Xu, Z., Zhou, R. Q., & Duan, Z. T. (2001). New process for separating propylene and propane by extractive distillation with aqueous acetonitrile. Chemical Engineering Journal, 84, 581–586. DOI: 10.1016/s1385-8947(01)00175-9.

    Article  CAS  Google Scholar 

  • NIST (2001). In P. J. Lindstrom, & W. G. Mallard (Eds.), NIST Chemistry WebBook: NIST standard reference database No. 69. Gaithersburg, MD, USA: National Institute of Standards and Technology.

  • Luyben, W. L. (2008). Effect of solvent on controllability in extractive distillation. Industrial & Engineering Chemistry Research, 47, 4425–4439. DOI: 10.1021/ie701757d.

    Article  CAS  Google Scholar 

  • Luyben, W., & Chien, I. L. (2010). Design and control of distillation systems for separating azeotropes (pp. 473). Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Mahdi, T., Ahmad, A., Nasef, M. M., & Ripin, A. (2015). State-of-the-art technologies for separation of azeotropic mixtures. Separation & Purification Reviews, 44, 308–330. DOI: 10.1080/15422119.2014.963607.

    Article  CAS  Google Scholar 

  • Matsuda, H., Liebert, V., Tochigi, K., & Gmehling, J. (2013). Influence of sulfate-based anion ionic liquids on the separation factor of the binary azeotropic system acetone + methanol. Fluid Phase Equilibria, 340, 27–30. DOI: 10.1016/j.fluid.2012.12.006.

    Article  CAS  Google Scholar 

  • Raeva, V. M., Sazonova, A. Yu., & Frolkova, A. K. (2013). Synergetic effect of binary separating agents in extractive rectification of homogeneous mixtures. Theoretical Foundations of Chemical Engineering, 47, 649–659. DOI: 10.1134/s0040579513050096.

    Article  CAS  Google Scholar 

  • Verma, V. K., & Banerjee, T. (2010). Ionic liquids as entrainers for water + ethanol, water + 2-propanol, and water + THF systems: A quantum chemical approach. The Journal of Chemical Thermodynamics, 42, 909–919. DOI: 10.1016/j.jct.2010.03.001.

    Article  CAS  Google Scholar 

  • Yeh, A. I., Berg, L., & Warren, K. J. (1988). The separation of acetone-methanol mixture by extractive distillation. Chemical Engineering Communications, 68, 69–79. DOI: 10.1080/00986448808940398.

    Article  CAS  Google Scholar 

  • Zhang, Z. G., Huang, D. H., Lv, M., Jia, P., Sun, D. Z., & Li, W. X. (2014). Entrainer selection for separating tetrahydrofuran/water azeotropic mixture by extractive distillation. Separation and Purification Technology, 122, 73–77. DOI: 10.1016/j.seppur.2013.10.051.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Yu. Sazonova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazonova, A.Y., Raeva, V.M. & Frolkova, A.K. Design of extractive distillation process with mixed entrainer. Chem. Pap. 70, 594–601 (2016). https://doi.org/10.1515/chempap-2015-0247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0247

Keywords

Navigation