Chemical Papers

, Volume 70, Issue 5, pp 594–601 | Cite as

Design of extractive distillation process with mixed entrainer

  • Aleksandra Yu. Sazonova
  • Valentina M. Raeva
  • Alla K. Frolkova
Original Paper
  • 32 Downloads

Abstract

The separation of two systems containing minimum boiling azeotropes (acetone—methanol and tetrahydrofuran (THF)—water) was performed using extractive distillation with a heavy boiling mixed entrainer consisting of two compounds. The entrainer constituents did not form new azeotropes with each other and with the components of the original mixture. An analysis of the mixed entrainer influence on the vapor-liquid equilibrium (VLE) and relative volatility provides an understanding of the cases in which the separation by extractive distillation (ED) in the presence of the mixed entrainer revealed energy benefits over their individual constituents. New results for application of the mixed entrainer monoethanolamine (MEA)—ethylene glycol (EG) and dimethyl-sulphoxide (DMSO)—glycerol for the separation of THF—water and acetone—methanol, respectively, are presented for the first time. The individual selective agents were chosen from the efficient entrainers discussed in the literature. The calculations were performed using the platform Aspen Plus 7.3. Different extractive distillation flowsheets are provided for the zeotropic mixed agents, viz. with two or three columns. For the ED of the binary mixtures investigated, the structures of the different separation schemes, the operating parameters of the columns, and the energy consumptions are presented and compared. The application of the mixed entrainer MEA—EG fed into the ED column with pre-mixing can be recommended, providing up to 1.7 % of energy saving for acetone—methanol separation. In the case of THF—water, the mixed entrainer DMSO—glycerol provides 0.8 % of energy saving. The separate inputs of the individual constituents of the mixed entrainer led to a significant increase in the energy consumptions of the flowsheet because of the third regeneration column, hence this flowsheet cannot be recommended for use in the separation of both mixtures.

Keywords

extractive distillation mixed entrainer multiple inputs synergetic effect energy consumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2016_700050594_MOESM1_ESM.docx (84 kb)
Supplementary material, approximately 86 KB.

References

  1. Berg, L., & Yeh, A. I. (1984). The separation of isopropyl ether from methyl ethyl ketone by extractive distillation. Chemical Engineering Communications, 29, 283–289. DOI: 10.1080/00986448408940163.CrossRefGoogle Scholar
  2. Berg, L., Yeh, A. I., & Ratanapupech, P. (1985). The recovery of ethyl acetate by extractive distillation. Chemical Engineering Communications, 39, 193–199. DOI: 10.1080/00986448508911670.CrossRefGoogle Scholar
  3. Berg, L., Vosburgh, M. G., Christensen, R.W., & Shanahan, M. J. (1988). The separation of lower boiling alcohols by extractive distillation. Chemical Engineering Communications, 66, 1–21. DOI: 10.1080/00986448808940257.CrossRefGoogle Scholar
  4. Berg, L., Szabados, R. J., Wendt, K. M., & Yeh, A. I. (1990). The dehydration of the lower fatty acids by extractive distillation. Chemical Engineering Communications, 89, 113–131. DOI: 10.1080/00986449008940563.CrossRefGoogle Scholar
  5. Gao, X., Li, X. G., & Li, H. (2010). Hydrolysis of methyl acetate via catalytic distillation: Simulation and design of new technological process. Chemical Engineering and Processing: Process Intensification, 49, 1267–1276. DOI: 10.1016/j.cep.2010.09.015.CrossRefGoogle Scholar
  6. Gao, X., Wang, F. Z., Li, H., & Li, X. G. (2014). Heatintegrated reactive distillation process for TAME synthesis. Separation and Purification Technology, 132, 468–478. DOI: 10.1016/j.seppur.2014.06.003.CrossRefGoogle Scholar
  7. Gil, I. D., García, L. C., & Rodríguez, G. (2014). Simulation of ethanol extractive distillation with mixed glycols as separating agent. Brazilian Journal of Chemical Engineering, 31, 259–270. DOI: 10.1590/s0104-66322014000100024.CrossRefGoogle Scholar
  8. Gmehling, J., & Kleiber, M. (2014). Vapor—liquid equilibrium and physical properties for distillation. In A. Górak, & E. Sorensen (Eds.), Distillation: Fundamentals and principles (pp. 45–95). London, UK: Academic Press. DOI: 10.1016/b978-0-12-386547-2.00002-8.CrossRefGoogle Scholar
  9. Gómez, P. A., & Gil, I. D. (2009). Simulation of the tetrahydrofuran dehydration process by extractive distillation. Latin American Applied Research, 39, 275–284.Google Scholar
  10. Harris, R. A., Ramjugernath, D., Letcher, T. M., & Raal, J. D. (2002). Monoethanolamine as an extractive solvent for the n-hexane + benzene, cyclohexane + ethanol, and acetone + methanol binary systems. Journal of Chemical & Engineering Data, 4, 781–787. DOI: 10.1021/je010240+.CrossRefGoogle Scholar
  11. Jarvelin, H., & Fair, J. R. (1993). Adsorptive separation of propylene—propane mixtures. Industrial & Engineering Chemistry Research, 32, 2201–2207. DOI: 10.1021/ie00022a001.CrossRefGoogle Scholar
  12. Kirk, R. E., & Othmer, D. F. (2007). Kirk-Othmer encylopedia of chemical technology (5th ed., Vol. 8). New York, NY, USA: Wiley-Interscience.Google Scholar
  13. Koczka, K., Maczinger, J., Mizsey, P., & Fonyo, Z. (2007). Novel hybrid separation processes based on pervaporation for THF recovery. Chemical Engineering and Processing Process Intensification, 46, 239–246. DOI: 10.1016/j.cep.2006.05.016.CrossRefGoogle Scholar
  14. Lei, Z. G., Li, C. Y., & Chen, B. H. (2003). Extractive distillation: A review. Separation & Purification Reviews, 32, 121–213. DOI: 10.1081/spm-120026627.CrossRefGoogle Scholar
  15. Liao, B., Lei, Z. G., Xu, Z., Zhou, R. Q., & Duan, Z. T. (2001). New process for separating propylene and propane by extractive distillation with aqueous acetonitrile. Chemical Engineering Journal, 84, 581–586. DOI: 10.1016/s1385-8947(01)00175-9.CrossRefGoogle Scholar
  16. NIST (2001). In P. J. Lindstrom, & W. G. Mallard (Eds.), NIST Chemistry WebBook: NIST standard reference database No. 69. Gaithersburg, MD, USA: National Institute of Standards and Technology.Google Scholar
  17. Luyben, W. L. (2008). Effect of solvent on controllability in extractive distillation. Industrial & Engineering Chemistry Research, 47, 4425–4439. DOI: 10.1021/ie701757d.CrossRefGoogle Scholar
  18. Luyben, W., & Chien, I. L. (2010). Design and control of distillation systems for separating azeotropes (pp. 473). Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  19. Mahdi, T., Ahmad, A., Nasef, M. M., & Ripin, A. (2015). State-of-the-art technologies for separation of azeotropic mixtures. Separation & Purification Reviews, 44, 308–330. DOI: 10.1080/15422119.2014.963607.CrossRefGoogle Scholar
  20. Matsuda, H., Liebert, V., Tochigi, K., & Gmehling, J. (2013). Influence of sulfate-based anion ionic liquids on the separation factor of the binary azeotropic system acetone + methanol. Fluid Phase Equilibria, 340, 27–30. DOI: 10.1016/j.fluid.2012.12.006.CrossRefGoogle Scholar
  21. Raeva, V. M., Sazonova, A. Yu., & Frolkova, A. K. (2013). Synergetic effect of binary separating agents in extractive rectification of homogeneous mixtures. Theoretical Foundations of Chemical Engineering, 47, 649–659. DOI: 10.1134/s0040579513050096.CrossRefGoogle Scholar
  22. Verma, V. K., & Banerjee, T. (2010). Ionic liquids as entrainers for water + ethanol, water + 2-propanol, and water + THF systems: A quantum chemical approach. The Journal of Chemical Thermodynamics, 42, 909–919. DOI: 10.1016/j.jct.2010.03.001.CrossRefGoogle Scholar
  23. Yeh, A. I., Berg, L., & Warren, K. J. (1988). The separation of acetone-methanol mixture by extractive distillation. Chemical Engineering Communications, 68, 69–79. DOI: 10.1080/00986448808940398.CrossRefGoogle Scholar
  24. Zhang, Z. G., Huang, D. H., Lv, M., Jia, P., Sun, D. Z., & Li, W. X. (2014). Entrainer selection for separating tetrahydrofuran/water azeotropic mixture by extractive distillation. Separation and Purification Technology, 122, 73–77. DOI: 10.1016/j.seppur.2013.10.051.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Aleksandra Yu. Sazonova
    • 1
  • Valentina M. Raeva
    • 1
  • Alla K. Frolkova
    • 1
  1. 1.Lomonosov Moscow State University of Fine Chemical TechnologiesMoscowRussia

Personalised recommendations