Skip to main content
Log in

Experimental investigations of liquid flow in pipe with flat internal baffles

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Liquid flow in a tubular reactor with flat internal baffles of various widths was investigated. On the basis of the laser Doppler anemometry (LDA) measurements, the main flow parameters, i.e. the mean and fluctuating velocity components and turbulent kinetic energy (TKE) were determined. The investigations demonstrated that the insertion of baffles into a pipe and a change in their width caused a generation of liquid stream whirls, induced liquid recirculation loops and intensified the flow considerably. The results can be useful in describing turbulent flow in tubular reactors with baffles and in optimising their design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Atabi, M., Chin, S. B., & Luo, X. Y. (2005a). Flow structure in circular tubes with segmental baffles. Journal of Flow Visualization and Image Processing, 12, 301–311. DOI: 10.1615/JFlowVisImageProc.v12.i3.60.

    Article  Google Scholar 

  • Al-Atabi, M. T., Chin, S. B., & Luo, X. Y. (2005b). Visualization of mixing of flow in circular tubes with segmental baffles. Journal of Visualization, 8, 89. DOI: 10.1007/bf03181649.

    Article  Google Scholar 

  • Al-Atabi, M. (2011). Design and assessment of a novel static mixer. The Canadian Journal of Chemical Engineering, 89, 550–554. DOI: 10.1002/cjce.20412.

    Article  CAS  Google Scholar 

  • Albrecht, H. E., Damaschke, N., Borys, M., & Tropea, C. (2003). Laser Doppler and phase Doppler measurement techniques. Berlin, Germany: Springer. DOI: 10.1007/978-3-662-05165-8.

    Book  Google Scholar 

  • Craig, T. O. (1987). Heat transfer during polymerization in motionless mixers. Polymer Engineering & Science, 27, 13861389. DOI: 10.1002/pen.760271806.

    Google Scholar 

  • Dantec Dynamics (2005). Installation & user’s guide (BSA flow software, version 4). Skovlunde, Denmark: Dantec Dynamics.

    Google Scholar 

  • DeGraaff, D. B., & Eaton, J. K. (2001). A high-resolution laser Doppler anemometer: design, qualification, and uncertainty. Experiments in Fluids, 30, 522–530. DOI: 10.1007/s00348000 0231.

    Article  Google Scholar 

  • Durst, F., Melling, A., & Whitelaw, J. H. (1987). Theorie und Praxis der Laser-Doppler-Anemometrie. Karlsruhe, Germany: G. Braun. DOI: 10.1007/978-3-642-52132-4.

    Book  Google Scholar 

  • Furling, O., Tanguy, P. A., Choplin, L., & Li, H. Z. (2000). Solid liquid mixing at high concentrations with SMX static mixers. In Proceedings of the 10th European Conference on Mixing, July 2–5, 2000 (pp. 93–100). Delft, The Netherlands: Elsevier. DOI: 10.1016/b978-044450476-0/50013-3.

    Chapter  Google Scholar 

  • Grace, H. P. (1982). Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chemical Engineering Communications, 14, 225–277. DOI: 10.1080/00986448208911 047.

    Article  CAS  Google Scholar 

  • Mehdi, Q. S., & Mushatet, K. S. (2008). Simulation of turbulent flow and heat transfer through a duct with baffle plates. Journal of Engineering and Development, 12(3), 142–157.

    Google Scholar 

  • Mendoza Marin, F. L., Ferrareso Lona, L. M., Wolf Maciel, M. R., & Maciel Filho, R. (2006). New emulsion polymerization tubular reactor with internal angular baffles: Reaction temperature effect. Journal of Applied Polymer Science, 100, 2572–2581. DOI 10.1002/app.22638.

    Article  Google Scholar 

  • Murasiewicz, H., & Jaworski, Z. (2013). Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry. Chemical Papers, 67, 1188–1200. DOI: 10.2478/s11696-013-0375-z.

    Article  CAS  Google Scholar 

  • Olivieri, G., Salatino, P., & Marzocchella, A. (2014). Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. Journal of Chemical Technology and Biotechnology, 89, 178–195. DOI: 10.1002/jctb.4218.

    Article  CAS  Google Scholar 

  • Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (Eds.) (2004). Handbook of industrial mixing: Science and practice. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Strěk, F. (1981). Mixing and agitated vessels. Warsaw, Poland: WNT. (in Polish)

    Google Scholar 

  • Szoplik, J., & Karcz, J. (2005). An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impeller. Chemical Papers, 59, 373–379.

    CAS  Google Scholar 

  • Tandiroglu, A. (2006). Effect of flow geometry parameters on transient heat transfer for turbulent flow in a circular tube with baffle inserts. International Journal of Heat and Mass Transfer, 49, 1559–1567. DOI: 10.1016/j.ijheatmasstransfer.2006.01.018.

    Article  Google Scholar 

  • Tandiroglu, A. (2007). Effect of flow geometry parameters on transient entropy generation for turbulent flow in circular tube with baffle inserts. Energy Conversion and Management, 48, 898–906. DOI: 10.1016/j.enconman.2006.08.022.

    Article  CAS  Google Scholar 

  • Venneker, B. C. H., Derksen, J. J., & Van den Akker, H. E. A. (2010). Turbulent flow of shear-thinning liquids in stirred tanks-The effects of Reynolds number and flow index. Chemical Engineering Research and Design, 88, 827–843. DOI: 10.1016/j.cherd.2010.01.002.

    Article  CAS  Google Scholar 

  • Wang, L. L., Tao, Y., & Mao, X. Z. (2014). A novel flat plate algal bioreactor with horizontal baffles: Structural optimization and cultivation performance. Bioresource Technology, 164, 20–27. DOI: 10.1016/j.biortech.2014.04.100.

    Article  CAS  Google Scholar 

  • Wojtowicz, R., & Talaga, J. (2014). Identification of turbulent liquid flow in a tubular reactor with different width baffles. Chemical Engineering Communications. DOI: 10.1080/00986445.2014.978449. (in press)

    Google Scholar 

  • Yang, Y. T., & Hwang, C. Z. (2003). Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer, 46, 771–780. DOI: 10.1016/s0017-9310(02)00360-5.

    Article  CAS  Google Scholar 

  • Zakrzewska, B. (2003). Numerical modeling of heat transport in stirred vessels. Ph.D. Thesis, West Pomeranien University of Technology Szczecin, Szczecin, Poland. (in Polish)

    Google Scholar 

  • Zakrzewska, B., & Jaworski, Z. (2004). CFD modeling of transient flow in a stirred vessel equipped with Rushton turbine. InZynieria Chemiczna i Procesowa, 25, 1825–1830. (in Polish)

    CAS  Google Scholar 

  • Zhang, Z. (2002). Velocity bias in LDA measurements and its dependence on the flow turbulence. Flow Measurement and Instrumentation, 13, 63–68. DOI: 10.1016/s09555986(02)00029-8.

    Article  Google Scholar 

  • Zlokarnik, M. (2001). Stirring: Theory and practice. Weinheim, Germeny: Wiley-VCH. DOI: 10.1002/9783527612703.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Wójtowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaga, J., Wójtowicz, R. Experimental investigations of liquid flow in pipe with flat internal baffles. Chem. Pap. 70, 477–487 (2016). https://doi.org/10.1515/chempap-2015-0236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0236

Keywords

Navigation