Skip to main content
Log in

Prediction of power consumption in mechanically agitated gassed reactor in viscous batch

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Transport characteristics such as volumetric mass transfer coefficients, kLa, power input, P, gas hold-up, γ, and mixing time, tm, are the key parameters in the design of mechanically agitated gasliquid contactors. For their successful design, values of the key parameters can be estimated using empirical correlations. Power input in this case is very often used as the scale of energy dissipation for other characteristics. Our goal was to propose reliable power input correlations for viscous batch processes, which are widely used in industry. The measurements were carried out in a pilot-plant vessel and also results from a laboratory vessel were used to develop the correlations. Different types of impellers and their combinations were used, including radial, axial, and combined liquid flow impellers. The power input was measured in a multiple-impeller vessel at different impeller frequencies and several gas flow rates. Correlation equations describing the behavior of particular impellers were evaluated. In addition, separate correlations for the bottom and upper sections in the multiple-impeller vessel were presented. These correlations can be used for impeller power prediction in industrial scale vessels under a wide range of operational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrardi, V., Rovero, G., Sicardi, S., Baldi, G., & Conti, R. (1988). Sparged vessels agitated by multiple turbines. In Proceedings of the 6th European Conference on Mixing, May 24—26 1988 (pp. 329–336). Pavia, Italy: AIDIC.

    Google Scholar 

  • Adamiak, R., & Karcz, J. (2007). Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems. Chemical Papers, 61, 16–23. DOI: 10.2478/s11696-006-0089–6.

    Article  CAS  Google Scholar 

  • Bates, R. L., Fondy, P. L., & Corpstein, R. R. (1963). Examination of some geometric parameters of impeller power. Industrial & Engineering Chemistry Process Design and Development, 2, 310–314. DOI: 10.1021/i260008a011.

    Article  CAS  Google Scholar 

  • Clark, M. W., & Vermeulen, T. (1963). Power requirements for mixing of liquid-gas systems. Berkeley, CA, USA: University of California. (LRL report UCRL-10996)

    Google Scholar 

  • Cui, Y. Q., van der Lans, R. G. J. M., & Luyben, K. C. A. M. (1996). Local power uptake in gas-liquid systems with single and multiple Rushton turbines. Chemical Engineering Science, 51, 2631–2636. DOI: 10.1016/0009-2509(96)00128-5.

    Article  CAS  Google Scholar 

  • Djebbar, R., Roustan, M., Line, A., & Bouaifi, M. (1997). CFD mass transfer predictions in aerated agitated tanks equipped with axial impeller. In J. Bertrand, & J. Villermaux (Eds.), Mixing 97: Multiphase systems (pp. 239–246).

    Google Scholar 

  • Fujasová, M., Linek, V., & Moucha, T. (2007). Mass transfer correlations for multiple-impeller gas-liquid contactors. Analysis of the effect of axial dispersion in gas and liquid phases on ”local” kLa values measured by the dynamic pressure method in individual stages of the vessel. Chemical Engineering Science, 62, 1650–1669. DOI: 10.1016/j.ces.2006.12.003.

    Article  Google Scholar 

  • Galaction, A. I., Cascaval, D., Oniscu, C., & Turnea, M. (2004). Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochemical Engineering Journal, 20, 85–94. DOI: 10.1016/j.bej.2004.02.005.

    Article  CAS  Google Scholar 

  • Gogate, P. R., Beenackers, A. A. C. M., & Pandit, A. B. (2000). Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochemical Engineering Journal, 6, 109–144. DOI: 10.1016/s1369-703x(00)00081&-4.

    Article  CAS  Google Scholar 

  • Gonzalez-Saiz, J. M., Pizarro, C., & Garrido-Vidal, D. (2008). Modelling gas-liquid and liquid-gas transfers in vinegar production by genetic algorithms. Journal of Food Engineering, 87, 136–147. DOI: 10.1016/j.jfoodeng.2007.11.020.

    Article  CAS  Google Scholar 

  • Hari-Prajitno, D., Mishra, V. P., Takenaka, K., Bujalski, W., Nienow, A. W., & McKemmie, J. (1998). Gas-liquid mixing studies with multiple upand down-pumping hydrofoil impellers: Power characteristics and mixing time. Canadian Journal of Chemical Engineering, 76, 1056–1068. DOI: 10.1002/cjce.5450760612.

    Article  CAS  Google Scholar 

  • Hassan, I. T. M., & Robinson, C. W. (1977). Stirred-tank mechanical power requirement and gas holdup in aerated aqueous phases. AIChE Journal, 23, 48–56. DOI: 10.1002/aic.690230109.

    Article  CAS  Google Scholar 

  • Hicks, R. W., & Gates, L. E. (1976). How to select turbine agitators for dispersing gas into liquids. Chemical Engineering NY, 83(15), 141–148.

    Google Scholar 

  • Hudcova, V., Machon, V., & Nienow, A. W. (1989). Gas-liquid dispersion with dual Rushton turbine impellers. Biotechnology and Bioengineering, 34, 617–628. DOI: 10.1002/bit.260340506.

    Article  CAS  Google Scholar 

  • Hughmark, G. A. (1980). Power requirements and interfacial area in gas-liquid turbine agitate systems. Industrial & Engineering Chemistry Process Design and Development, 19, 638–641. DOI: 10.1021/i260076a023.

    Article  CAS  Google Scholar 

  • Islam, R. S., Tisi, D., Levy, M. S., & Lye, G. J. (2008). Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched kLa. Biotechnology and Bioengineering, 99, 1128–1139. DOI: 10.1002/bit.21697.

    Article  CAS  Google Scholar 

  • Joshi, J. B., Pandit, A. B., & Sharma, M. M. (1982). Mechanically agitated gas-liquid reactors. Chemical Engineering Science, 37, 813–844. DOI: 10.1016/0009-2509(82)80171-1.

    Article  CAS  Google Scholar 

  • Ju, L. K., & Chase, G. G. (1992). Improved scale-up strategies of bioreactors. Bioprocess Engineering, 8, 49–53. DOI: 10.1007/bf00369263.

    Article  CAS  Google Scholar 

  • Kumaresan, T., & Joshi, J. B. (2006). Effect of impeller design on the flow pattern and mixing in stirred tanks. Chemical Engineering Journal, 115, 173–193. DOI: 10.1016/j.cej.2005.10.002.

    Article  CAS  Google Scholar 

  • Linek, V., Moucha, T., Dousova, M., & Sinkule, J. (1994). Measurement of kLa by dynamic pressure method in pilot-plant fermentor. Biotechnology and Bioengineering, 43, 477–482. DOI: 10.1002/bit.260430607.

    Article  CAS  Google Scholar 

  • Linek, V., Moucha, T., Rejl, F. J., Kordac, M., Hovorka, F., Opletal, M., & Haidl, J. (2012). Power and mass transfer correlations for the design of multi-impeller gas-liquid contactors for non-coalescent electrolyte solutions. Chemical Engineering Journal, 209, 263–272. DOI: 10.1016/j.cej.2012.08.005.

    Article  CAS  Google Scholar 

  • Loiseau, B., Midoux, N., & Charpentier, J. C. (1977). Some hydrodynamics and power input data in mechanically agitated gas-liquid contactors. AIChE Journal, 23, 931–935. DOI: 10.1002/aic.690230621.

    Article  CAS  Google Scholar 

  • Lu, W. M., & Yao, C. L. (1992). Power consumption and gas dispersion in a multi-stage Rushton turbine impeller stirred tank. Journal of the Chinese Institute of Chemical Engineers, 23, 173–179.

    Article  CAS  Google Scholar 

  • Lu, W. M., & Wu, H. Z. (2002). Gassed power drawn by each impeller in multiple impeller agitated vessels. Journal of the Chinese Institute of Chemical Engineers, 33, 541–553.

    CAS  Google Scholar 

  • Luong, H. T., & Volesky, B. (1979). Mechanical power requirements of gas-liquid agitated system. AIChE Journal, 25, 893–895. DOI: 10.1002/aic.690250520.

    Article  Google Scholar 

  • Marques, M. P. C., Cabral, J. M. S., & Fernandes, P. (2010). Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. Journal of Chemical Technology and Biotechnology, 85, 1184–1198. DOI: 10.1002/jctb.2387.

    Article  CAS  Google Scholar 

  • McFarlane, C. M., Zhao, X. M., & Nienow, A. W. (1995). Studies of high solidity ratio hydrofoil impellers for aerated bioreactors. 2. Air-water studies. Biotechnology Progress, 11, 608–618. DOI: 10.1021/bp00036a002.

    Article  CAS  Google Scholar 

  • Michel, B. J., & Miller, S. A. (1962). Power requirements of gasliquid agitated systems. AIChE Journal, 8, 262–266. DOI: 10.1002/aic.690080226.

    Article  Google Scholar 

  • Moucha, T., Linek, V., Erokhin, K., Rejl, J. F., & Fujasova, M. (2009). Improved power and mass transfer correlations for design and scale-up of multi-impeller gas-liquid contactors. Chemical Engineering Science, 64, 598–604. DOI: 10.1016/j.ces.2008.10.043.

    Article  CAS  Google Scholar 

  • Moucha, T., Rejl, F. J., Kordac, M., & Labik, L. (2012). Mass transfer characteristics of multiple-impeller fermenters for their design and scale-up. Biochemical Engineering Journal, 69, 17–27. DOI: 10.1016/j.bej.2012.08.007.

    Article  CAS  Google Scholar 

  • Nagata, S. (1975). Mixing principles and applications. Ultimo, NSW, Australia: Halstead Press.

    Google Scholar 

  • Nienow, A. W., & Lilly, M. D. (1979). Power drawn by multiple impellers in sparged agitated vessels. Biotechnology and Bioengineering, 21, 2341–2345. DOI: 10.1002/bit.260211214.

    Article  Google Scholar 

  • Nienow, A. W. (1990). Gas dispersion performance in fermentor operation. Chemical Engineering Progress, 86(2), 61–71.

    CAS  Google Scholar 

  • Nocentini, M., Magelli, F., Pasquali, G., & Fajner, D. (1988). A fluid-dynamic study of a gas-liquid, non-standard vessel stirred by multiple impellers. The Chemical Engineering Journal, 37, 53–59. DOI: 10.1016/0300-9467(88)80006-6.

    Article  CAS  Google Scholar 

  • Pacek, A. W., Chamsart, S., Nienow, A. W., & Bakker, A. (1999). The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chemical Engineering Science, 54, 4211–4222. DOI: 10.1016/s00092509(99)00156-6.

    Article  CAS  Google Scholar 

  • Pharamond, J. C., Roustan, M., & Roques, H. (1975). Determination de la puissance consommee dans une cuve aeree et agitee. Chemical Engineering Science, 30, 907–912. DOI: 10.1016/0009-2509(75)80056-x. (in French)

    Article  CAS  Google Scholar 

  • Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2005). Gas-liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor. Biochemical Engineering Journal, 23, 25–30. DOI: 10.1016/j.bej.2004.10.006.

    Article  CAS  Google Scholar 

  • Rieger, F., Kuncewicz, C., & Seichter, P. (2011). Comparision of conditions for suspensions production for standard six blade turbine impeller and TX335 impeller. Przemysl Chemiczny, 90, 2179–2182.

    CAS  Google Scholar 

  • Rieger, F., Jirout, T., Ceres, D., & Seichter, P. (2013). Effect of impeller shape on solid particle suspension. Chemical and Process Engineering-Inzynieria Chemiczna i Procesowa, 34, 139–152. DOI: 10.2478/cpe-2013-0012.

    CAS  Google Scholar 

  • Rushton, J. H., Costich, E. W., & Everett, H. J. (1950). Power characteristics of mixing impellers. Chemical Engineering Progress, 46, 467–476.

    CAS  Google Scholar 

  • Sardeing, R., Aubin, J., Poux, M., & Xuereb, C. (2004). Gasliquid mass transfer: Influence of sparger location. Chemical Engineering Research and Design, 82, 1161–1168. DOI: 10.1205/cerd.82.9.1161.44158.

    Article  CAS  Google Scholar 

  • Seichter, P. (1987). Power input of aerated agitator system of high-speed fermenter. Collection of Czechoslovak Chemical Communications, 52, 2181–2187. DOI: 10.1135/cccc19872181.

    Article  Google Scholar 

  • Seichter, P., & Pešl, L. (2005). Navrhování rotačních míchadel — věda nebo rutina? CHEMagazín, 15(2), 8–11. (in Czech)

    Google Scholar 

  • Seichter, P., & Pešl, L. (2012). Tlakové účinky axiálních míchadel. CHEMagazín, 22(2), 8–11. (in Czech)

    Google Scholar 

  • Smith, J. M., Gao, Z. M., & Middleton, J. C. (2001). The unsparged power demand of modern gas dispersing impeller in boiling liquids. Chemical Engineering Journal, 84, 15–21. DOI: 10.1016/s1385–8947(00)00267–9.

    Article  CAS  Google Scholar 

  • van’t Riet, K., Boom, J. M., & Smith, J. M. (1976). Power consumption, impeller coalescence and recirculation in aerated vessels. Transactions of the Institution of Chemical Engineers, 54, 124–131.

    Google Scholar 

  • Zlokarnik, M. (2006). Scale-up in chemical engineering (2 ed.). Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  • Zokaei-Kadijani, S., Safdari, J., Mousavian, M. A., & Rashidi, A. (2013). Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching. Annals of Nuclear Energy, 53, 280–287. DOI: 10.1016/j.anucene.2012.07.036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Labík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labík, L., Moucha, T., Rejl, F.J. et al. Prediction of power consumption in mechanically agitated gassed reactor in viscous batch. Chem. Pap. 70, 461–469 (2016). https://doi.org/10.1515/chempap-2015-0229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0229

Keywords

Navigation