Skip to main content
Log in

Kinetic study of non-reactive iron removal from iron-gall inks

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The removal of non-reactive iron for different combinations of Fe2+ and tannic acid in irongall inks, via calcium phytate solutions, was studied. In parallel, the non-reactive iron removal kinetics was investigated using the pseudo first-order and second-order kinetic models. The results showed that the use of a dilute solution of calcium phytate to wash the impregnated paper strips removed the non-reactive iron from iron-gall inks in approximately 15 min in stoichiometric and non-stoichiometric combinations of iron and tannic acid. A second washing of the paper strips after an accelerated ageing, showed a distinct kinetic behaviour, with iron removal taking place simultaneously but apparently via a different mechanism. The use of a reference calcium phytate solution exhibited the same behaviour, suggesting that the use of dilute solutions as iron removal agents would represent less damage to historical documents. The results of kinetic modelling showed that all the combinations of Fe2+ and tannic acid used fitted the pseudo first-order kinetic model, when dilute and reference phytate solutions were tested as iron-desorbing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albro, S., & Biggs, J. (2008). Solutions for treating iron-gall ink artifacts. Library of Congress Information Bulletin, 67, 115.

    Google Scholar 

  • Batterham, I., & Rai, R. A. (2008). A comparison of artificial ageing with 27 years of natural ageing. AICCM Book, Paper and Photographic Materials Symposium, 2008, 81–89.

    Google Scholar 

  • Botti, L., Mantovani, O., & Ruggiero, D. (2005). Calcium phytate in the treatment of corrosion caused by iron gall inks: Effects on paper. Restaurator, 26, 44–62. DOI: 10.1515/rest.2005.44.

    CAS  Google Scholar 

  • Burgaud, C., Rouchon, V., Wattiaux, A., Bleton, J., Sabot, R., & Refait, P. (2006). Determination of the Fe(II)/Fe(III) ratio in iron gall inks by potentiometry: A preliminary study. Journal of Electroanalytical Chemistry, 650, 16–23. DOI: 10.1016/j.jelechem.2010.09.015.

    Article  Google Scholar 

  • Cleveland, R. (2000). Selected 18th, 19th and 20th century iron gall ink formulations developed in England, Françe Germany and the United States, for use with the copy press process. In Proceeding of The Iron Gall Ink Meeting, September 4–5, 2000 (pp. 23–30). Newcastle upon Tyne, UK: University of Northumbria.

    Google Scholar 

  • da Costa, A. C. A., da Fonseca, N. F., de Carvalho, S. S., dos Santos, F. C. S. C., Barki, L., de Freitas, D. S., Herbst, M.H., & Lutterbach, M. T. S. (2013). Archaeometric investigations on naturally and thermally-aged iron-gall inks using different tannin sources. Central European Journal of Chemistry, 11, 1729–1739. DOI: 10.2478/s11532-013-0303-7.

    CAS  Google Scholar 

  • da Costa, A. C. A., Corręa, F., Sant’Anna, G., De Carvalho, S., Dos Santos, F., & Lutterbach, M. (2014). Scanning electron microscopic characterization of iron-gall inks from different tannin sources — Applications for cultural heritage. Chemistry & Chemical Technology, 8, 423–430.

    Google Scholar 

  • Dzinavatonga, K., Bharuth-Ram, K., & Medupe, T. R. (2015). Mössbauer spectroscopy analysis of valence state of iron in historical documents obtained from the National Library of South Africa. Journal of Cultural Heritage, 16, 377–380. DOI: 10.1016/j.culher.2014.06.004.

    Article  Google Scholar 

  • Eusman, E., & Mensch, K. (2000). Ink on the run — measuring migration of iron in iron gall ink. In Proceeding of The Iron Gall Ink Meeting, September 4–5, 2000 (pp. 115–122). Newcastle upon Tyne, UK: University of Northumbria.

    Google Scholar 

  • Hahn, O. (2010). Analyses of iron gall and carbon inks by means of X-ray fluorescence analysis: A non-destructive approach in the field of archaeometry and conservation science. Restaurator, 31, 41–64. DOI: 10.1515/rest.2010.003.

    CAS  Google Scholar 

  • Hanus, J., Maková, A., Čeppan, M., Mináriková, J., Hanusová, E., & Havlnová, B. (2009). Survey of historical manuscripts written with iron gall inks in the Slovak Republic. Restaurator, 30, 165–180. DOI: 10.1515/rest.011.

    Google Scholar 

  • James, C. (2000). The evolution of iron gall ink and its aesthetical consequences. In Proceeding of The Iron Gall Ink Meeting, September 4–5, 2000 (pp. 13–22). Newcastle upon Tyne, UK: University of Northumbria.

    Google Scholar 

  • Jančovičová, V., Čeppan, M., Havlínová, B., Reháková, M., & Jakubíková, Z. (2007). Interactions in iron gall inks. Chemical Papers, 61, 391–397. DOI: 10.2478/s11696-007-0053-0.

    Google Scholar 

  • Kolar, J., & Strlič, M. (2006). Iron gall inks: On manufacture, characterization, degradation and stabilization. Ljubljana, Slovenia: National and University Library.

    Google Scholar 

  • Kolar, J., Možir, A., Strlič, M., Bruin, G., Pihlar, B., & Steemers, T. (2007). Stabilization of iron gall ink: Aqueous treatment with magnesium phytate. e-Preservation Science, 4, 19–24.

    CAS  Google Scholar 

  • La Camera, D. (2007). Crystal formations within iron gall ink: Observations and analysis. Journal of the American Institute for Conservation, 46, 153–174. DOI: 10.1179/019713607806112341.

    Article  Google Scholar 

  • Maenz, D. D., Engele-Schaan, C. M., Newkirk, R. W., & Classen, H. L. (1999). The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Animal Feed Science and Technology, 81, 177–192. DOI: 10.1016/s0377-8401(99)00085-1.

    Article  CAS  Google Scholar 

  • Malešič, J., Kolar, J., Strlič, M., & Polanc, S. (2005). The use of halides for stabilization of iron gall ink containing paper — the pronounced effect of cation. e-Preservation Science, 2, 13–18.

    Google Scholar 

  • Malešič, J., Šala, M., Šelih, V. S., & Kočar, D. (2014). Evaluation of a method for treatment of iron gall ink corrosion on paper. Cellulose, 21, 2925–2936. DOI: 10.1007/s10570-014-0311-6.

    Article  Google Scholar 

  • Neevel, J. G. (1995). Phytate: A potential conservation agent for the treatment of ink corrosion caused by irongall inks. Restaurator, 16, 143–160. DOI: 10.1515/rest.1995.16.3.143.

    CAS  Google Scholar 

  • Neevel, J. G., & Reissland, B. (2005). Bathophenanthroline indicator paper. Papier Restaurierung, 6, 28–36.

    Google Scholar 

  • Orlandini, V. (2009). Effect of aqueous treatments on nineteenth-century iron-gall-ink documents: Calcium phytate treatment — optimization of existing protocols. The Book and Paper Group Annual, 28, 137–146.

    Google Scholar 

  • Reissland, B. (2000). Visible progress of paper degradation caused by iron gall inks. In Proceedings of The Iron Gall Ink Meeting, September 4–5, 2000 (pp. 67–72). Newcastle upon Tyne, UK: University of Northumbria.

    Google Scholar 

  • Robert, R., Barbati, S., Ricq, N., & Ambrosio, M. (2002). Intermediates in wet oxidation of cellulose: Identification of hydroxyl radical and characterization of hydrogen peroxide. Water Research, 36, 4821–4829. DOI: 10.1016/s0043-1354(02)00205-1.

    Article  CAS  Google Scholar 

  • Rouchon-Quillet, V., Remazeilles, C., Bernard, J., Wattiaux, A., & Fournes, L. (2004). The impact of gallic acid on iron gall ink corrosion. Applied Physics A, 79, 389–392. DOI: 10.1007/s00339-004-2541-1.

    Article  CAS  Google Scholar 

  • Rouchon, V., Durocher, B., Pellizzi, E., & Stordiau-Pallot, J. (2009). The water sensitivity of iron gall ink and its risk assessment. Studies in Conservation, 54, 236–254.

    Article  CAS  Google Scholar 

  • Rouchon, V., Duranton, M., Burgaud, C., Pellizzi, E., Lavedrine, B., Janssens, K., de Nolf, W., Nuyts, G., Vanmeert, F., & Hellemans, K. (2011a). Room-temperature study of iron gall ink impregnated paper degradation under various oxygen and humidity conditions: Time-dependent monitoring by viscosity and X-ray absorption near-edge spectrometry measurements. Analytical Chemistry, 83, 2589–2597. DOI: 10.1021/ac1029242.

    Article  CAS  Google Scholar 

  • Rouchon, V., Pellizzi, E., Duranton, M., Vanmeert, F., & Janssens, K. (2011b). Combining XANES, ICP-AES and SEM/EDS for the study of phytate chelating treatments used on iron gall ink damaged manuscripts. Journal of Analytical Atomic Spectrometry, 26, 2434–2441. DOI: 10.1039/c1ja10185d.

    Article  CAS  Google Scholar 

  • Rouchon, V., Duranton, M., Belhadj, O., Bastier-Deroches, M., Duplat, V., Walbert, C., & Hansen, B. V. (2013). The use of halide charged interleaves for treatment of iron gall ink damaged papers. Polymer Degradation and Stability, 98, 1339–1347. DOI: 10.1016/j.polymdegradstab.2013.03.028.

    Article  CAS  Google Scholar 

  • Rouchon, V., & Bernard, S. (2015). Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy. Journal of Analytical Atomic Spectrometry, 30, 635–641. DOI: 10.1039/c4ja00358f.

    Article  CAS  Google Scholar 

  • Scott, G. (1997). Antioxidants in science, technology, medicine and nutrition. Chichester, UK: Albion Publishing.

    Book  Google Scholar 

  • Trengove, L. (1970). Chemistry at the royal society of London in the eighteenth century — IV. Dyes. Annals of Science, 26, 331–353. DOI: 10.1080/00033797000203567.

    Article  CAS  Google Scholar 

  • Wagner, B., Bulska, E., Stahl, B., Heck, M., & Ortner, H. M. (2004). Analysis of Fe valence states in iron-gall inks from XVIth century manuscripts by 57Fe Mössbauer spectroscopy. Analytica Chimica Acta, 527, 195–201. DOI: 10.1016/j.aca.2004.04.011.

    Article  CAS  Google Scholar 

  • Yue, G. K., Zhao, L. M., Olvera, O. G., & Asselin, E. (2014). Speciation of the H2SO46-Fe2(SO4)3−FeSO4-H2O system and development of an expression to predict the redox potential of the Fe3+/Fe2+ couple up to 150°C. Hydrometallurgy, 147–148, 196–209. DOI: 10.1016/j.hydromet.2014.05.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. A. da Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, A.C.A., do Corrêa, F.N., de Sant’Anna, G.S. et al. Kinetic study of non-reactive iron removal from iron-gall inks. Chem. Pap. 70, 602–609 (2016). https://doi.org/10.1515/chempap-2015-0227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0227

Keywords

Navigation