Skip to main content

Advertisement

Log in

Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2016

Abstract

Ruthenium, rhodium and platinum are the most expensive of noble metals. As their natural sources are limited, it is important to develop an effective process for recovering Rh, Ru and Pt from waste sources. Their main suppliers are the following industries: chemical (spent catalysts), automotive, jewellery, dental and petrochemical. This paper presents studies on the extraction of Rh(III), Ru(III) and Pt(IV) from model aqueous chloride solutions using trihexyl(tetradecyl)phosphonium bromide (Cyphos IL 102). The effects of different parameters such as the influence of shaking time, HCl and NaCl concentrations in the feed solutions and also Cyphos IL 102 concentration in the organic phase, on the extraction of these metal ions were investigated. Additionally, the effect of the ageing of Rh(III) and Ru(III) chloride solutions on the extraction of these metal ions was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aktas, S. (2011). Rhodium recovery from rhodium-containing waste rinsing water via cementation using zinc powder. Hydrometallurgy, 106, 71–75. DOI: 10.1016/j.hydromet.2010. 12.005.

    Article  CAS  Google Scholar 

  • Angelidis, T. N. (2001). Development of a laboratory scale hydrometallurgical procedure for the recovery of Pt and Rh from spent automotive catalysts. Topics in Catalysis, 16/17, 419–423. DOI: 10.1023/a:1016641906103.

    Article  Google Scholar 

  • Benguerel, E. (1996). Solvent extraction of rhodium from chloride solutions in the presence of SnCl2with KELEX 100. Ph.D. thesis, McGill University, Montreal, Canada.

    Google Scholar 

  • Chehade, Y., Siddique, A., Alayan, H., Sadasivam, N., Nusri, S., & Ibrahim, T. (2012). Recovery of gold, silver, palladium, and copper from waste printed circuit boards. In Proceedings of the International Conference on Chemical, Civil and Environment Engineering, March 24–25, 2012 (pp. 226–234). Dubai, United Arab Emirates: Planetary Scientific Research Center.

    Google Scholar 

  • Cieszynska, A., & Wisniewski, M. (2010). Extraction of palladium) from chloride solutions with Cyphos® IL 101/toluene mixtures as novel extractant. Separation and Purification Technology., 73, 202–207. DOI: 10.1016/j.seppur.2010.04.001.

    Article  CAS  Google Scholar 

  • Cieszynska, A., & Wisniewski, M. (2011). Selective extraction of palladium(II) from hydrochloric acid solutions with phosphonium extractants. Separation and Purification Technology., 80, 385–389. DOI: 10.1016/j.seppur.2011.05.025.

    Article  CAS  Google Scholar 

  • Cieszynska, A., Regel-Rosocka, M., & Wisniewski, M. (2011). Extractive methods for recovery and separation of noble metals. Przemysl Chemiczny, 90, 1579–1585. (in Polish)

    CAS  Google Scholar 

  • Cieszynska, A., & Wiśniewski, M. (2012). Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos® IL 104. Hydrometallurgy, 113-114, 79–85. DOI: 10.1016/j.hydromet.2011.12.006.

    Article  CAS  Google Scholar 

  • Giridhar, P., Venkatesan, K. A., Srinivasan, T. G., & Vasudeva Rao, P. R. (2006). Extraction of fission palladium by Aliquat 336 and electrochemical studies on direct recovery from ionic liquid phase. Hydrometallurgy, 81, 30–39. DOI: 10.1016/j.hydromet.2005.10.001.

    Article  CAS  Google Scholar 

  • Goralska, E., Coll, M. T., Fortuny, A., Kedari, C. S., & Sastre, A. M. (2007). Studies on the selective of Ir(IV), Ru(III) and Rh(III) from chloride solutions using Alamine 336 in kerosene. Solvent Extraction and Ion Exchange, 25, 65–77. DOI: 10.1080/07366290601067820.

    Article  CAS  Google Scholar 

  • Gupta, B., & Singh, I. (2013). Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their re-covery from real samples. Hydrometallurgy, 134–135, 11–18. DOI: 10.1016/j.hydromet.2013.01.001.

    Article  Google Scholar 

  • Hagelüken, C. (2006). Markets for the catalysts metals platinum, palladium, and rhodium. Metall 60, 31–42.

    Google Scholar 

  • Jaree, A., & Khunphakdee, N. (2011). Separation of concen-trated platinum(IV) and rhodium(III) in acidic chloride solution via liquid-liquid extraction using trioctylamine. Journal of Industrial and Engineering Chemistry, 17, 243–247. DOI: 10.1016/j.jiec.2011.02.013.

    Article  CAS  Google Scholar 

  • Kedari, S., Coll, M. T., Fortuny, A., Goralska, E., & Sastre, A. M. (2005). Liquid-liquid extraction of Ir, Ru and Rh from chloride solutions and their separation using different commercially available solvent extraction reagents. Separation Science and Technology, 40, 1927–1946. DOI: 10.1081/ss-200064551.

    Article  CAS  Google Scholar 

  • Li, J., Shrivastava, P., Gao, Z., & Zhang, H. C. (2004). Printed circuit board recycling: a state-of-the-art survey. IEEE Transactions on Electronics Packaging Manufacturing, 27, 33–42. DOI: 10.1109/tepm.2004.830501.

    Article  CAS  Google Scholar 

  • Mat, H. B., & Seng, T. B. (2006). Selective liquid-liquid extraction of precious metals from semiconductor wastes. Johor Bahru, Malaysia: Universiti Teknologi Malaysia.

    Google Scholar 

  • Mhaske, A., & Dhadke, P. (2002). Extraction separation studies of Os, Ru and Ir using Cyanex 921 in toluene. Hydrometallurgy, 63, 207–214. DOI: 10.1016/s0304-386x(01)00218-3.

    Article  CAS  Google Scholar 

  • Mpinga, C. N., Bradshaw, S. M., Akdogan, G., Snyders, C. A., & Eksteen, J. J. (2014). The extraction of Pt, Pd and Au from an alkaline cyanide simulated heap leachate by granu-lar activated carbon. Minerals Engineering, 55, 11–17. DOI: 10.1016/j.mineng.2013.09.001.

    Article  CAS  Google Scholar 

  • Paiva, A. P., Carvalho, G. I., Costa, M. C., Rosa da Costa, A. M., & Nogueira, C. (2014). Recovery of platinum and palladium from chloride solutions by a thiodiglycolamide derivative. Solvent Extraction and Ion Exchange, 32, 78–94. DOI: 10.1080/07366299.2013.810969.

    Article  CAS  Google Scholar 

  • Papaiconomou, N., Lee, J. M., Salminen, J., von Stosch, M., & Prausnitz, J. M. (2008). Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Industrial & Engineering Chemistry Research, 47, 5080–5086. DOI: 10.1021/ie0706562.

    Article  CAS  Google Scholar 

  • Pospiech, B. (2012). The hydrometallurgical technology for recovery of precious and non-ferrous metals from spent catalysts. Przemysl Chemiczny, 91, 2008–2010. (in Polish)

    CAS  Google Scholar 

  • Rechnitz, G. A., & Goodkin, S. C. (1963). Some properties of ruthenium (III) and (IV) in acid solution. Platinum Metals Review, 7, 25–29.

    CAS  Google Scholar 

  • Regel-Rosocka, M., Rzelewska, M., Baczynska, M., Janus, M., & Wisniewski, M. (2015). Removal of palladium(II) from aqueous chloride solutions with Cyphos phosphonium ionic liq-uids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes. Physico-chemical Problems of Mineral Processing, 51, 621–631. DOI: 10.5277/ppmp150221.

    CAS  Google Scholar 

  • Schreier, G., & Edtmaier, C. (2003). Separation of Ir, Pd and Rh from secondary Pt scrap by precipitation and calcination. Hydrometallurgy, 68, 69–75. DOI: 10.1016/s0304-386x(02)00194-9.

    Article  CAS  Google Scholar 

  • Stojanovic, A., Kogelnig, D., Fischer, L., Hann, S., Galanski, M., Groessl, M., Krachler, R., & Keppler, B. K. (2010). Phosphonium and ammonium ionic liquids with aromatic anions: Synthesis, properties, and platinum extraction. Australian Journal of Chemistry, 63, 511–524. DOI: 10.1071/ch09340.

    Article  CAS  Google Scholar 

  • Szymanowski, J. (1990). Copper extraction by hydroxyoximes. Warsaw, Poland: PWN. (in Polish)

    Google Scholar 

  • Tanaka, S., Harada, A., Nishihama, S., & Yoshizuka, K. (2012). Selective recovery of platinum group metals from spent automobile catalyst by integrated ion exchange methods. Separation Science and Technology, 47, 1369–1373. DOI: 10.1080/01496395.2012.672526.

    Article  CAS  Google Scholar 

  • Umeda, H., Sasaki, A., Takahashi, K., Haga, K., Takasaki, Y., & Shibayama, A. (2011). Recovery and concentration of precious metals from strong acidic wastewater. Materials Transactions, 52, 1462–1470. DOI: 10.2320/matertrans.m2010432.

    Article  CAS  Google Scholar 

  • Willner, J., & Fornalczyk, A. (2012). Electronic scraps as a source of precious metals. Przemysl: Chemiczny, 91, 517–522. (in Polish)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Regel-Rosocka.

Additional information

Presented at the 41st International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 26–30 May 2014.

An erratum to this article is available at http://dx.doi.org/10.1515/chempap-2016-0022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzelewska, M., Baczyńska, M., Regel-Rosocka, M. et al. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions. Chem. Pap. 70, 454–460 (2016). https://doi.org/10.1515/chempap-2015-0223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0223

Key words

Navigation