Chemical Papers

, Volume 70, Issue 4, pp 495–504 | Cite as

Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants

  • Traian Zaharescu
  • Heloísa A. Zen
  • Măadăalina Marinescu
  • Sandra R. Scagliusi
  • Elisabeth C. L. Cardoso
  • Ademar B. Lugão
Original Paper
  • 13 Downloads

Abstract

The mitigation of oxidative degradation under γ-irradiation promoted by eight commercial antioxidants: Ethanox 330, Hostanox O3, Irganox 1010, Topanol OC, Ionox 220, Santonox R, Santowhite, Cyanox 2246 loaded onto ethylene-propylene terpolymer at the concentration of 0.5 phr in respect of a pristine polymer was studied. The polymer samples were exposed to various doses up to 500 kGy. The kinetic parameters of oxidations: oxidation induction times, onset oxidation temperature, oxidation rates were evaluated by CL measurements. They validated the differences in the stabilisa-tion activities by limitation of the oxidation gradient. The high efficiency of some of the antioxidants studied, such as Ionox 220 and Santowhite, ensured the delay in degradation even at a high irradiation dose (500 kGy). For the environments with γ-radiation exposure, a relevant sequence in the increasing protection efficiency could be established: Topanol OC; Hostanox O3; Irganox 1010; Cyanox 2246; Santonox R; Ionox 220; Santowhite. The FT-IR spectra were recorded for the calculation of the radiochemical yields resulting from the modifications occuring in the concentrations of oxygenated structures. The accumulations of hydroxyl- and carbonyl-containing products were calculated to evaluate the irradiation effects in EPDM-based products during a severe accident. The options for EPDM stabilisation are discussed based on chemiluminescence and FTIR analyses.

Key words

EPDM radiation degradation oxidation stabilisation FT-IR chemiluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, I., Li, C. Y., Hsuan, Y. G., & Cairncross, R. A. (2014). Reaction model describing antioxidant depletion in polyethylene—clay nanocomposites under thermal ageing. Polymer Degradation and Stability, 110, 318–335. DOI: 10.1016/j.polymdegradstab.2014.09.002.CrossRefGoogle Scholar
  2. Beißmann, S., Reisinger, M., Grabmayer, K., Wallner, G., Nitsche, D., & Buchberger, W. (2014). Analytical evaluation of the performances of stabilization systems for polyolefinic materials. Part I: Interaction between hindered amine light stabilizers and phenolic antioxidants. Polymer Degradation and Stability, 110, 498–508. DOI: 10.1016/j.polymdegradstab.2014.09.020.CrossRefGoogle Scholar
  3. Bykova, I., Weinhardt, V., Kashkarova, A., Lebedev, S., Baumbach, T., Pichugin, V., Zaitsev, K., & Khlusov, I. (2014). Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation. Journal of Material Science: Materials in Medicine, 25, 1843–1852. DOI: 10.1007/s10856-014-5222-4.Google Scholar
  4. Celina, M. C. (2013). Review of polymer oxidation and its relationship with materials performances and lifetime prediction. Polymer Degradation and Stability, 98, 2419–2429. DOI: 10.1016/j.polymdegradstab.2013.06.024.CrossRefGoogle Scholar
  5. Cerutti, P., Malinconico, M., Rychly, J., Matisova-Rychla, L., & Carfagna, C. (2009). Effect of natural antioxidants on the stability of polypropylene films. Polymer Degradation and Stability, 94, 2095–2100. DOI: 10.1016/j.polymdegradstab.2009.07.023.CrossRefGoogle Scholar
  6. Chiellini, E., Corti, A., D’Antone, S., & Baciu, R. (2006). Oxo-biodegradable carbon backnone polymer — Oxidative degradation of polyethylene under accelerated test conditions. Polymer Degradation and Stability, 91, 2739–2747. DOI: 10.1016/j.polymdegradstab.2006.03.022.CrossRefGoogle Scholar
  7. Escobar Barrios, V. A., Rangel Méndez, J. R., Pérez Aguilar, N. V., Andrade Espinosa, G., & Davila Rodriguez, J. L. (2012). FTIR — An essential characterization technique for polymer materials. In T. Theophanides (Ed.), Infrared spectroscopy — materials science, engineering and technology (chapter 9, pp. 207). Rijeka, Croatia: InTech. DOI: 10.5772/36044.Google Scholar
  8. Ghaffari, M., & Ahmadian, V. (2007). Investigation of an-tioxidant and electron beam radiation effects on the ther-mal oxidation stability of low-density polyethylene. Radiation Physics and Chemistry, 76, 1666–1670. DOI: 10.1016/j. radphyschem.2007.02.101.CrossRefGoogle Scholar
  9. Gheysari, D., & Behjat, A. (2001). Radiation crosslinking of LDPE and HDPE with 5 and 10 MeV electron beams. Euro-pean Polymer Journal, 37, 2011–2016. DOI: 10.1016/s0014-3057(01)00084-2.CrossRefGoogle Scholar
  10. Hoyos, M., Tiemblo, P., Gómez-Elvira, J. M. B., Rychla, L., & Rychly, J. (2006). Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene. Polymer Degradation and Stability, 91, 1433–1442. DOI: 10.1016/j.polymdegradstab.2005.10.013.CrossRefGoogle Scholar
  11. Jipa, S., & Zaharescu, T. (2013). Radiochemical modifications in polymers. In K. F. Arndt, & M. D. Lechner (Eds.), Polymer solids and polymer melts: Definitions and physical properties I. Heidelberg, Germany: Springer.Google Scholar
  12. Lundbäck, M., Hedenqvist, M. S., Mattozzi, A., & Gedde, U. W. (2006). Migration of phenolic antioxidants from linear and branched polyethylene. Polymer Degradation and Stability, 91, 1571–1580. DOI: 10.1016/j.polymdegradstab.2005.09. 008.CrossRefGoogle Scholar
  13. Navarro, R., Audouin, L., & Verdu, J. (2011). Reactions of an-tioxidants with molecular oxygen. Part III: Influence of phenolic stabiliser structures on their oxidation in an inert matrix. Polymer Degradation and Stability, 96, 1389–1396. DOI: 10.1016/j.polymdegradstab.2011.03.008.CrossRefGoogle Scholar
  14. Ohtake, Y., Yamamoto, Y., Gonokami, M., Nakamura, T., Ishii, H., & Kawahara, S. (2013). Degradation profiles in aged EPDM water seals using focused ion beam-scanning electron microscopy. Polymer Degradation and Stability, 98, 2489–2496. DOI: 10.1016/j.polymdegradstab.2013.08.027.CrossRefGoogle Scholar
  15. Plaček, V., Kohout, T., Hnát, V., & Bartoníček, B. (2009). Assessment of the EPDM seal lifetime in nuclear power plants. Polymer Testing, 28, 209–214. DOI: 10.1016/j. polymertesting.2008.12.005.CrossRefGoogle Scholar
  16. Pospíšil, J., Horák, Z., Pilař, J., Billingham, N., C., Zweifel, H., & Nešpûrek, S. (2003). Influence of testing conditions on the performances and durability of polymer stabilizers in thermal oxidation. Polymer Degradation and Stability, 82, 143–162. DOI: 10.1016/s0141-3910(03)00210-6.CrossRefGoogle Scholar
  17. Rajini, V., & Udayakumar, K. (2007). Resistance to tracking of EPDM aged by gamma irradiation under AC and DC voltages. International Journal of Emerging Electric Power Systems, 8, 1393. DOI: 10.2202/1553-779x.1393.CrossRefGoogle Scholar
  18. Reinas, I., Oliveira, J., Pereira, J., Machado, F., & Pocas, M. F. (2012). Migration of two antioxidants from packaging into a solid food and into Tenax®. Food Control, 28, 333–337. DOI: 10.1016/j. foodcont.2012.05.023.CrossRefGoogle Scholar
  19. Richaud, E., Farcas, F., Bartoloméo, P., Fayolle, B., Audouin, L., & Verdu, J. (2006). Effect of oxygen pressure on the oxidation kinetics of unstabilised polypropylene. Polymer Degradation and Stability, 91, 398–405. DOI: 10.1016/j.polymdegradstab.2005.04.043.CrossRefGoogle Scholar
  20. Rivaton, A., Cambon, S., & Gardette, J. L. (2006). Radiochemical ageing of ethylene—propylene—diene elastomers. 4. Evaluation of some anti-oxidants. Polymer Degradation and Sta-bility, 91, 136–143. DOI: 10.1016/j.polymdegradstab.2005.04. 018.CrossRefGoogle Scholar
  21. Rjeb, A., Tajounte, L., El Idrissi, M. C., Letarte, S., Adnot, A., Roy, D., Claire, Y., Périchaud, A., & Kaloustian, J. (2000). IR spectroscopy study of polypropylene natural aging. Journal of Applied Polymer Science, 77, 1742–1748. DOI: 10.1002/1097-4628(20000822)77:8<1742::AID-APP11>3.0. CO;2-T.CrossRefGoogle Scholar
  22. Rychlÿ, J., Matisová-Rychlá, L., & Jurčák, D. (2000). Chemiluminescence from oxidized polypropylen during tempera-ture cycling. Polymer Degradation and Stability, 68, 239–246. DOI: 10.1016/s0141-3910(00)00006-9.CrossRefGoogle Scholar
  23. Sibeko, M. A., & Luyt, A. S. (2014). Preparation and charac-terisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays. Polymer Bulletin, 71, 637–657. DOI: 10.1007/s00289-013-1083-0.CrossRefGoogle Scholar
  24. Stelescu, M. A., Manaila, E., & Craciun, G. (2013). Vulcanization of ethylene-propylene-terpolymer-based rubber mix-tures by radiation processing. Journal of Applied Polymer Science, 128, 2325–2336. DOI: 10.1002/app.38231.CrossRefGoogle Scholar
  25. Suljovrujic, E. (2013). Post-irradiation effects in polyethylenes irradiated under various atmospheres. Radiation Physics and Chemistry, 89, 43–50. DOI: 10.1016/j.radphyschem.2013.04. 003.CrossRefGoogle Scholar
  26. Yilmaz Kaptan, H., & Güven, O. (1997). Effect of γ-irradiation dose for the oxygen diffusion into polymers. Journal of Applied Polymer Science, 64, 1291–1294. DOI: 10.1002/(SICI) 1097-4628(19970516)64:7<1291::AID-APP7>3.0.œ;2-E.CrossRefGoogle Scholar
  27. Zaharescu, T., Giurginca, M., & Jipa, S. (1999). Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants. Polymer Degradation and Stability, 63, 245–251. DOI: 10.1016/s0141-3910(98)00100-1.CrossRefGoogle Scholar
  28. Zaharescu, T., Jipa, S., & Gigante, B. (2006). Stabilized polyethylene on the sterilization dose range. Polymer Bulletin, 57, 729–735. DOI: 10.1007/s00289-006-0628-x.CrossRefGoogle Scholar
  29. Zaharescu, T., Jipa, S., Mantsch, A., & Henderson, D. (2013a). Stabilization effects of naringenin and caffeic acid in γ-irradiated EPDM. Radiation Physics and Chemistry, 84, 35–38. DOI: 10.1016/j.radphyschem.2012.06.050.CrossRefGoogle Scholar
  30. Zaharescu, T., Plesa, I., & Jipa, S. (2013b). Kinetic effects of silica nanoparticles on thermal and radiation stability of polyolefins. Polymer Bulletin, 70, 2981–2994. DOI: 10.1007/s00289-013-1001-5.CrossRefGoogle Scholar
  31. Zaharescu, T., Pleşa, I., & Jipa, S. (2014). Improvement in the degradation resistance of LDPE for radiochemical processing. Radiation Physics and Chemistry, 94, 151–155. DOI: 10.1016/j.radphyschem.2013.07.009.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Traian Zaharescu
    • 1
  • Heloísa A. Zen
    • 2
  • Măadăalina Marinescu
    • 1
  • Sandra R. Scagliusi
    • 2
  • Elisabeth C. L. Cardoso
    • 2
  • Ademar B. Lugão
    • 2
  1. 1.Department of Advanced Materials, INCDIE ICPE CANational Institute for Electrical EngineeringBucharestRomania
  2. 2.IPEN-CNEN/SP, Nuclear and Research Institute, 2242 Av. Prof. Lineu PrestesCiudade UniversitáriaSão PauloBrazil

Personalised recommendations