Skip to main content
Log in

Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The mitigation of oxidative degradation under γ-irradiation promoted by eight commercial antioxidants: Ethanox 330, Hostanox O3, Irganox 1010, Topanol OC, Ionox 220, Santonox R, Santowhite, Cyanox 2246 loaded onto ethylene-propylene terpolymer at the concentration of 0.5 phr in respect of a pristine polymer was studied. The polymer samples were exposed to various doses up to 500 kGy. The kinetic parameters of oxidations: oxidation induction times, onset oxidation temperature, oxidation rates were evaluated by CL measurements. They validated the differences in the stabilisa-tion activities by limitation of the oxidation gradient. The high efficiency of some of the antioxidants studied, such as Ionox 220 and Santowhite, ensured the delay in degradation even at a high irradiation dose (500 kGy). For the environments with γ-radiation exposure, a relevant sequence in the increasing protection efficiency could be established: Topanol OC; Hostanox O3; Irganox 1010; Cyanox 2246; Santonox R; Ionox 220; Santowhite. The FT-IR spectra were recorded for the calculation of the radiochemical yields resulting from the modifications occuring in the concentrations of oxygenated structures. The accumulations of hydroxyl- and carbonyl-containing products were calculated to evaluate the irradiation effects in EPDM-based products during a severe accident. The options for EPDM stabilisation are discussed based on chemiluminescence and FTIR analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Li, C. Y., Hsuan, Y. G., & Cairncross, R. A. (2014). Reaction model describing antioxidant depletion in polyethylene—clay nanocomposites under thermal ageing. Polymer Degradation and Stability, 110, 318–335. DOI: 10.1016/j.polymdegradstab.2014.09.002.

    Article  CAS  Google Scholar 

  • Beißmann, S., Reisinger, M., Grabmayer, K., Wallner, G., Nitsche, D., & Buchberger, W. (2014). Analytical evaluation of the performances of stabilization systems for polyolefinic materials. Part I: Interaction between hindered amine light stabilizers and phenolic antioxidants. Polymer Degradation and Stability, 110, 498–508. DOI: 10.1016/j.polymdegradstab.2014.09.020.

    Article  Google Scholar 

  • Bykova, I., Weinhardt, V., Kashkarova, A., Lebedev, S., Baumbach, T., Pichugin, V., Zaitsev, K., & Khlusov, I. (2014). Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation. Journal of Material Science: Materials in Medicine, 25, 1843–1852. DOI: 10.1007/s10856-014-5222-4.

    CAS  Google Scholar 

  • Celina, M. C. (2013). Review of polymer oxidation and its relationship with materials performances and lifetime prediction. Polymer Degradation and Stability, 98, 2419–2429. DOI: 10.1016/j.polymdegradstab.2013.06.024.

    Article  CAS  Google Scholar 

  • Cerutti, P., Malinconico, M., Rychly, J., Matisova-Rychla, L., & Carfagna, C. (2009). Effect of natural antioxidants on the stability of polypropylene films. Polymer Degradation and Stability, 94, 2095–2100. DOI: 10.1016/j.polymdegradstab.2009.07.023.

    Article  Google Scholar 

  • Chiellini, E., Corti, A., D’Antone, S., & Baciu, R. (2006). Oxo-biodegradable carbon backnone polymer — Oxidative degradation of polyethylene under accelerated test conditions. Polymer Degradation and Stability, 91, 2739–2747. DOI: 10.1016/j.polymdegradstab.2006.03.022.

    Article  CAS  Google Scholar 

  • Escobar Barrios, V. A., Rangel Méndez, J. R., Pérez Aguilar, N. V., Andrade Espinosa, G., & Davila Rodriguez, J. L. (2012). FTIR — An essential characterization technique for polymer materials. In T. Theophanides (Ed.), Infrared spectroscopy — materials science, engineering and technology (chapter 9, pp. 207). Rijeka, Croatia: InTech. DOI: 10.5772/36044.

    Google Scholar 

  • Ghaffari, M., & Ahmadian, V. (2007). Investigation of an-tioxidant and electron beam radiation effects on the ther-mal oxidation stability of low-density polyethylene. Radiation Physics and Chemistry, 76, 1666–1670. DOI: 10.1016/j. radphyschem.2007.02.101.

    Article  CAS  Google Scholar 

  • Gheysari, D., & Behjat, A. (2001). Radiation crosslinking of LDPE and HDPE with 5 and 10 MeV electron beams. Euro-pean Polymer Journal, 37, 2011–2016. DOI: 10.1016/s0014-3057(01)00084-2.

    Article  CAS  Google Scholar 

  • Hoyos, M., Tiemblo, P., Gómez-Elvira, J. M. B., Rychla, L., & Rychly, J. (2006). Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene. Polymer Degradation and Stability, 91, 1433–1442. DOI: 10.1016/j.polymdegradstab.2005.10.013.

    Article  CAS  Google Scholar 

  • Jipa, S., & Zaharescu, T. (2013). Radiochemical modifications in polymers. In K. F. Arndt, & M. D. Lechner (Eds.), Polymer solids and polymer melts: Definitions and physical properties I. Heidelberg, Germany: Springer.

    Google Scholar 

  • Lundbäck, M., Hedenqvist, M. S., Mattozzi, A., & Gedde, U. W. (2006). Migration of phenolic antioxidants from linear and branched polyethylene. Polymer Degradation and Stability, 91, 1571–1580. DOI: 10.1016/j.polymdegradstab.2005.09. 008.

    Article  Google Scholar 

  • Navarro, R., Audouin, L., & Verdu, J. (2011). Reactions of an-tioxidants with molecular oxygen. Part III: Influence of phenolic stabiliser structures on their oxidation in an inert matrix. Polymer Degradation and Stability, 96, 1389–1396. DOI: 10.1016/j.polymdegradstab.2011.03.008.

    Article  CAS  Google Scholar 

  • Ohtake, Y., Yamamoto, Y., Gonokami, M., Nakamura, T., Ishii, H., & Kawahara, S. (2013). Degradation profiles in aged EPDM water seals using focused ion beam-scanning electron microscopy. Polymer Degradation and Stability, 98, 2489–2496. DOI: 10.1016/j.polymdegradstab.2013.08.027.

    Article  CAS  Google Scholar 

  • Plaček, V., Kohout, T., Hnát, V., & Bartoníček, B. (2009). Assessment of the EPDM seal lifetime in nuclear power plants. Polymer Testing, 28, 209–214. DOI: 10.1016/j. polymertesting.2008.12.005.

    Article  Google Scholar 

  • Pospíšil, J., Horák, Z., Pilař, J., Billingham, N., C., Zweifel, H., & Nešpûrek, S. (2003). Influence of testing conditions on the performances and durability of polymer stabilizers in thermal oxidation. Polymer Degradation and Stability, 82, 143–162. DOI: 10.1016/s0141-3910(03)00210-6.

    Article  Google Scholar 

  • Rajini, V., & Udayakumar, K. (2007). Resistance to tracking of EPDM aged by gamma irradiation under AC and DC voltages. International Journal of Emerging Electric Power Systems, 8, 1393. DOI: 10.2202/1553-779x.1393.

    Article  Google Scholar 

  • Reinas, I., Oliveira, J., Pereira, J., Machado, F., & Pocas, M. F. (2012). Migration of two antioxidants from packaging into a solid food and into Tenax®. Food Control, 28, 333–337. DOI: 10.1016/j. foodcont.2012.05.023.

    Article  CAS  Google Scholar 

  • Richaud, E., Farcas, F., Bartoloméo, P., Fayolle, B., Audouin, L., & Verdu, J. (2006). Effect of oxygen pressure on the oxidation kinetics of unstabilised polypropylene. Polymer Degradation and Stability, 91, 398–405. DOI: 10.1016/j.polymdegradstab.2005.04.043.

    Article  CAS  Google Scholar 

  • Rivaton, A., Cambon, S., & Gardette, J. L. (2006). Radiochemical ageing of ethylene—propylene—diene elastomers. 4. Evaluation of some anti-oxidants. Polymer Degradation and Sta-bility, 91, 136–143. DOI: 10.1016/j.polymdegradstab.2005.04. 018.

    Article  CAS  Google Scholar 

  • Rjeb, A., Tajounte, L., El Idrissi, M. C., Letarte, S., Adnot, A., Roy, D., Claire, Y., Périchaud, A., & Kaloustian, J. (2000). IR spectroscopy study of polypropylene natural aging. Journal of Applied Polymer Science, 77, 1742–1748. DOI: 10.1002/1097-4628(20000822)77:8<1742::AID-APP11>3.0. CO;2-T.

    Article  CAS  Google Scholar 

  • Rychlÿ, J., Matisová-Rychlá, L., & Jurčák, D. (2000). Chemiluminescence from oxidized polypropylen during tempera-ture cycling. Polymer Degradation and Stability, 68, 239–246. DOI: 10.1016/s0141-3910(00)00006-9.

    Article  Google Scholar 

  • Sibeko, M. A., & Luyt, A. S. (2014). Preparation and charac-terisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays. Polymer Bulletin, 71, 637–657. DOI: 10.1007/s00289-013-1083-0.

    Article  CAS  Google Scholar 

  • Stelescu, M. A., Manaila, E., & Craciun, G. (2013). Vulcanization of ethylene-propylene-terpolymer-based rubber mix-tures by radiation processing. Journal of Applied Polymer Science, 128, 2325–2336. DOI: 10.1002/app.38231.

    Article  CAS  Google Scholar 

  • Suljovrujic, E. (2013). Post-irradiation effects in polyethylenes irradiated under various atmospheres. Radiation Physics and Chemistry, 89, 43–50. DOI: 10.1016/j.radphyschem.2013.04. 003.

    Article  CAS  Google Scholar 

  • Yilmaz Kaptan, H., & Güven, O. (1997). Effect of γ-irradiation dose for the oxygen diffusion into polymers. Journal of Applied Polymer Science, 64, 1291–1294. DOI: 10.1002/(SICI) 1097-4628(19970516)64:7<1291::AID-APP7>3.0.œ;2-E.

    Article  Google Scholar 

  • Zaharescu, T., Giurginca, M., & Jipa, S. (1999). Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants. Polymer Degradation and Stability, 63, 245–251. DOI: 10.1016/s0141-3910(98)00100-1.

    Article  CAS  Google Scholar 

  • Zaharescu, T., Jipa, S., & Gigante, B. (2006). Stabilized polyethylene on the sterilization dose range. Polymer Bulletin, 57, 729–735. DOI: 10.1007/s00289-006-0628-x.

    Article  CAS  Google Scholar 

  • Zaharescu, T., Jipa, S., Mantsch, A., & Henderson, D. (2013a). Stabilization effects of naringenin and caffeic acid in γ-irradiated EPDM. Radiation Physics and Chemistry, 84, 35–38. DOI: 10.1016/j.radphyschem.2012.06.050.

    Article  CAS  Google Scholar 

  • Zaharescu, T., Plesa, I., & Jipa, S. (2013b). Kinetic effects of silica nanoparticles on thermal and radiation stability of polyolefins. Polymer Bulletin, 70, 2981–2994. DOI: 10.1007/s00289-013-1001-5.

    Article  CAS  Google Scholar 

  • Zaharescu, T., Pleşa, I., & Jipa, S. (2014). Improvement in the degradation resistance of LDPE for radiochemical processing. Radiation Physics and Chemistry, 94, 151–155. DOI: 10.1016/j.radphyschem.2013.07.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T., Zen, H.A., Marinescu, M. et al. Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants. Chem. Pap. 70, 495–504 (2016). https://doi.org/10.1515/chempap-2015-0214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0214

Key words

Navigation