Chemical Papers

, Volume 70, Issue 3, pp 305–314 | Cite as

Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions

  • Li-Yun Cui
  • Zhong-Wei Ding
  • Li-Ying Liu
  • Hao-Si Han
Original Paper


Liquid penetrations into hydrophobic capillaries are controlled by the adsorption and diffusion of the solute in the vicinity of the moving meniscus. The wetting process of microporous hydrophobic polyvinylidenefluoride (PVDF) and polytetrafluoroethylene (PTFE) membrane was investigated in both sodium dodecyl benzene sulphonate (SDBS) and diethanolamine (DEA) aqueous solutions. The experimental results revealed that wetting both the PVDF and PTFE membranes in SDBS solutions at high concentrations proceeded in two stages: rapid wetting and slow wetting, but this transition in the wetting rate was not observed during the membrane wetting at low SDBS concentration and in DEA solutions. The membrane wetting process was accelerated by increasing the solution temperature.


polyvinylidenefluoride polytetrafluoroethylene capillary imbibitions membrane wetting wetting ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguila-Hernández, J., Trejo, A., & Gracia-Fadrique, J. (2001). Surface tension of aqueous solutions of alkanolamines: Single amines, blended amines and systems with nonionic surfactants. Fluid Phase Equilibria, 185, 165–175. DOI: 10.1016/s0378-3812(01)00467-8.CrossRefGoogle Scholar
  2. Boributh, S., Rongwong, W., Assabumrungrat, S., Laosiripojana, N., & Jiraratananon, R. (2012). Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 401, 175–189. DOI: 10.1016/j.memsci.2012. 01.048.CrossRefGoogle Scholar
  3. Boributh, S., Jiraratananon, R., & Li, K. (2013). Analytical solutions for membrane wetting calculations based on lognormal and normal distribution functions for CO2 absorption by a hollow fiber membrane contactor. Journal of Membrane Science, 429, 459–472. DOI: 10.1016/j.memsci.2012.11.074.CrossRefGoogle Scholar
  4. Chanachai, A., Meksup, K., & Jiraratananon, R. (2010). Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process. Separation and Purification Technology, 72, 217–224. DOI: 10.1016/j.seppur.2010.02.014.CrossRefGoogle Scholar
  5. Churaev, N. V., Martynov, G. A., Starov, V. M., & Zorin, Z. M. (1981). Some features of capillary imbibition of surfactant solutions. Colloid and Polymer Science, 259, 747–752. DOI: 10.1007/bf01419320.CrossRefGoogle Scholar
  6. Churaev, N. V., & Zorin, Z. M. (1995). Penetration of aqueous surfactant solutions into thin hydrophobized capillaries. Colloids and Surfaces A, 100, 131–138. DOI: 10.1016/0927-7757(95)03150-c.CrossRefGoogle Scholar
  7. Cui, L. Y., Ding, Z. W., Liu, L. Y., & Li, Y. P. (2015). Modeling and experimental study of membrane wetting in microporous hollow fiber membrane contactors. The Canadian Journal of Chemical Engineering, 93, 1254–1265. DOI: 10.1002/cjce.22210.CrossRefGoogle Scholar
  8. Faiz, R., & Al-Marzouqi, M. (2009). Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. Journal of Membrane Science, 342, 269–278. DOI: 10.1016/j.memsci.2009.06.050.CrossRefGoogle Scholar
  9. Fries, N., & Dreyer, M. (2008). An analytic solution of capillary rise restrained by gravity. Journal of Colloid and Interface Science, 320, 259–263. DOI: 10.1016/j.jcis.2008.01.009.CrossRefGoogle Scholar
  10. Fu, D., Wang, L. F., & Wu, X. C. (2012). Investigation of the surface tension for diethanolamine–CO2 aqueous solutions. ActaChimicaSinica, 70, 339–344. DOI: 10.6023/a1105243.Google Scholar
  11. Gryta, M. (2005). Long-term performance of membrane distillation process. Journal of Membrane Science, 265, 153–159. DOI: 10.1016/j.memsci.2005.04.049.CrossRefGoogle Scholar
  12. Gryta, M., Grzechulska-Damszel, J., Markowska, A., & Kara-kulski, K. (2009). The influence of polypropylene degradation on the membrane wettability during membrane distillation. Journal of Membrane Science, 326, 493–502. DOI: 10.1016/j.memsci.2008.10.022.CrossRefGoogle Scholar
  13. Keshavarz, P., Fathikalajahi, J., & Ayatollahi, S. (2008). Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contactor. Separation and Purification Technology, 63, 145–155. DOI: 10.1016/j.seppur.2008.04.008.CrossRefGoogle Scholar
  14. Khaisri, S., deMontigny, D., Tontiwachwuthikul, P., & Jiraratananon, R. (2010). A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes. Journal of Membrane Science, 347, 228–239. DOI: 10.1016/j.memsci.2009.10.028.CrossRefGoogle Scholar
  15. Kreulen, H., Smolders, C. A., Versteeg, G. F., & van Swaaij, W. P. M. (1993). Microporous hollow fiber membrane modules as gas–liquid contactors Part 2. Mass transfer with chemical reaction. Journal of Membrane Science, 78, 217–238. DOI: 10.1016/0376-7388(93)80002-f.CrossRefGoogle Scholar
  16. Lee, K. S., Ivanova, N., Starov, V. M., Hilal, N., & Dutschk, V. (2008). Kinetics of wetting and spreading by aqueous surfactant solutions. Advances in Colloid and Interface Science, 144, 54–65. DOI: 10.1016/j.cis.2008.08.005.CrossRefGoogle Scholar
  17. Lu, J. G., Zheng, Y. F., & Cheng, M. D. (2008). Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. Journal of Membrane Science, 308, 180–190. DOI: 10.1016/j.memsci.2007.09.051.CrossRefGoogle Scholar
  18. Luis, P., Van der Bruggen, B., & Van Gerven, T. (2011). Nondispersive absorption for CO2 capture: From the laboratory to industry. Journal of Chemical Technology & Biotechnology, 86, 769–775. DOI: 10.1002/jctb.2614.CrossRefGoogle Scholar
  19. Mansourizadeh, A., Ismail, A. F., & Matsuura, T. (2010). Effect of operating onditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 353, 192–200. DOI: 10.1016/j.memsci.2010.02.054.CrossRefGoogle Scholar
  20. Markicevic, B., Hoff, K., Li, H., Zand, A. R., & Navaz, H. K. (2012). Capillary force driven primary and secondary unidirectional flow of wetting liquid into porous medium. International Journal of Multiphase Flow, 39, 193–204. DOI: 10.1016/j.ijmultiphaseflow.2011.09.008.CrossRefGoogle Scholar
  21. Mavroudi, M., Kaldis, S. P., & Sakellaropoulos, G. P. (2006). A study of mass transfer resistance in membrane gas–liquid contacting processes. Journal of Membrane Science, 272, 103–115. DOI: 10.1016/j.memsci.2005.07.025.CrossRefGoogle Scholar
  22. Mosadegh-Sedghi, S., Rodrigue, D., Brisson, J., & Iliuta, M. C. (2014). Wetting phenomenon in membrane contactors. Causes and prevention. Journal of Membrane Science, 452, 332–353. DOI: 10.1016/j.memsci.2013.09.055.CrossRefGoogle Scholar
  23. Mykhaylyk, T. A., Evans, S. D., Fernyhough, C. M., Hamley, I. W., & Henderson, J. R. (2003). Surface energy of ethylene-co-1-butene copolymers determined by contact angle methods. Journal of Colloid and Interface Science, 260, 234–239. DOI: 10.1016/s0021-9797(02)00188-1.CrossRefGoogle Scholar
  24. Siebold, A., Walliser, A., Nardin, M., Oppliger, M., & Schultz, J. (1997). Capillary rise for thermodynamic characterization of solid particle surface. Journal of Colloid and Interface Science, 186, 60–70. DOI: 10.1006/jcis.1996.4640.CrossRefGoogle Scholar
  25. Starov, V. M., Kostvintsev, S. R., Sobolev, V. D., Velarde, M. G., & Zhdanov, S. A. (2002). Spreading of liquid drop over dry porous layers: Complete wetting case. Journal of Colloid and Interface Science, 252, 397–408. DOI: 10.1006/jcis.2002.8450.CrossRefGoogle Scholar
  26. Starov, V. M. (2004). Surfactant solutions and porous substrates: Spreading and imbibition. Advances in Colloid and Interface Science, 111, 3–27. DOI: 10.1016/j.cis.2004.07.007.CrossRefGoogle Scholar
  27. Starov, V. M., Zhdanov, S. A., & Velarde, M. G. (2004). Capillary imbibition of surfactant solutions in porous media and thin capillaries: Partial wetting case. Journal of Colloid and Interface Science, 273, 589–595. DOI: 10.1016/j.jcis.2004.02.033.CrossRefGoogle Scholar
  28. Wang, R., Li, D. F., Zhou, C., Liu, M., & Liang, D. T. (2004). Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors. Journal of Membrane Science, 229, 147–157. DOI: 10.1016/j.memsci.2003.10.022.CrossRefGoogle Scholar
  29. Wang, R., Zhang, H. Y., Feron, P. H. M., & Liang, D. T. (2005). Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 46, 33–40. DOI: 10.1016/j.seppur.2005.04.007.CrossRefGoogle Scholar
  30. Wang, F. K., & Fan, X. W. (2008). Surface tensions measurement of aqueous solutions of sodium dodecyl benzene sulfonate. Journal of Henan Normal University (Natural Science), 36(3), 66–69.Google Scholar
  31. Zhang, H. Y., Wang, R., Liang, D. T., & Tay, J. H. (2008). Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO2 absorption. Journal of Membrane Science, 308, 162–170. DOI: 10.1016/j.memsci.2007.09.050.CrossRefGoogle Scholar
  32. Zhang, J., Qiu, Y., & Yu, D. Y. (2009). Critical micelle concentration determination of sodium dodecyl benzene sulfonate by synchronous fluorescence spectrometry. Chinese Journal of Applied Chemistry, 26, 1480–1483.Google Scholar
  33. Zhmud, B. V., Tiberg, F., & Hallstensson, K. (2000). Dynamics of capillary rise. Journal of Colloid and Interface Science, 228, 263–269. DOI: 10.1006/jcis.2000.6951.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Li-Yun Cui
    • 1
  • Zhong-Wei Ding
    • 1
  • Li-Ying Liu
    • 1
  • Hao-Si Han
    • 1
  1. 1.Beijing Key Laboratory of Membrane Science and TechnologyCollege of Chemical Engineering, Beijing University of Chemical Technology, Chaoyang DistrictBeijingChina

Personalised recommendations