Skip to main content
Log in

Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The autoignition technique using glycine as fuel and related nitrate salts as an oxidiser is able to produce zinc aluminate spinel. The precursors were synthesised with lean and rich fuel at pH of 7.0 and the materials so obtained were calcined at various temperatures ranging from 600–1200°C. The autoignition process of precursors was studied by the simultaneous thermo-gravimetric and differential thermal analyses to determine the ignition mechanism. The calcined powders were characterised by X-ray diffraction, Brunauer–Emmett–Teller technique and transmission electron microscopy. The product contains nano-sized particles with an average size of approximately 20 nm. The XRD patterns showed the formation of ZnO in the powder obtained by the fuel-rich precursor and calcined at 600 C which disappears at 800 C due to solid-state reaction and proper crystallisation after heat treatment. The results presented here can be useful in manufacturing nano and micro-sized ZnAl2O4 on an industrial scale using the combustion technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves, C. T., Oliveira, A., Carneiro, S. A. V., Silva, A. G., Andrade, H. M. C., Vieira de Melo, S. A. B., & Torres, E. A. (2013). Transesterification of waste frying oil using a zinc aluminate catalyst. Fuel Processing Technology, 106, 102–107. DOI: 10.1016/j.fuproc.2012.07.008.

    Article  CAS  Google Scholar 

  • Battiston, S., Rigo, C., Severo, E. C., Mazutti, M. A., Kuhn, R. C., Gündel, A., & Foletto, E. L. (2014). Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Materials Research, 17, 734–738. DOI: 10.1590/s1516-14392014005000073.

    Article  CAS  Google Scholar 

  • Charinpanitkul, T., Poommarin, P., Wongkaew, A., & Kim, K. S. (2009). Dependence of zinc aluminate microscopic structure on its synthesis. Journal of Industrial and Engineering Chemistry, 15, 163–166. DOI: 10.1016/j.jiec.2008.09.017.

    Article  CAS  Google Scholar 

  • Chen, L. M., Sun, X. M., Liu, Y. N., Zhou, K. B., & Li, Y. D. (2004). Porous ZnAl2O4 synthesized by a modified citrate technique. Journal of Alloys and Compounds, 376, 257–261. DOI: 10.1016/j.jallcom.2004.01.013.

    Article  CAS  Google Scholar 

  • Davar, F., & Salavati-Niasari, M. (2011). Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol–gel method using new precursor. Journal of Alloys and Compounds, 509, 2487–2492. DOI: 10.1016/j. jallcom.2010.11.058.

    Article  CAS  Google Scholar 

  • Dean, J. A. (1985). Lange’s handbook of chemistry (13th ed.). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Fan, G. L., Wang, J., & Li, F. (2011). Synthesis of high-surface-area micro/mesoporous ZnAl2O4 catalyst support and application in selective hydrogenation of o-chloronitrobenzene. Catalysis Communications, 15, 113–117. DOI: 10.1016/j. catcom.2011.08.024.

    Article  CAS  Google Scholar 

  • Foletto, E. L., Battiston, S., Simões, J. M., Bassaco, M. M., Pereira, L. S. F., Flores, E. M. M., & Müller, E. I. (2012). Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous and Mesoporous Materials, 163, 29–33. DOI: 10.1016/j.micromeso.2012.06.039.

    Article  CAS  Google Scholar 

  • Gama, L., Ribeiro, M. A., Barros, B. S., Kiminami, R. H. A., Weber, I. T., & Costa, A. C. F. M. (2009). Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method. Journal of Alloys and Compounds, 483, 453–455. DOI: 10.1016/j.jallcom.2008.08.111.

    Article  CAS  Google Scholar 

  • Hou, Q. Q., Meng, F. J., & Sun, J. M. (2013). Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition. Nanoscale Research Letters, 8, 144. DOI: 10.1186/1556-276x-8-144.

    Article  Google Scholar 

  • Hwang, C. C., & Wu, T. Y. (2004). Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants–influence of reactant composition. Journal of Materials Science, 39, 6111–6115. DOI: 10.1023/b:jmsc.0000041713.37366.c2.

    Article  CAS  Google Scholar 

  • Ianoş, R., Borcǎnescu, S., & Lazǎu, R. (2014). Large surface area ZnAl2O4 powders prepared by a modified combustion technique. Chemical Engineering Journal, 240, 260–263. DOI: 10.1016/j.cej.2013.11.082.

    Article  Google Scholar 

  • Kavas, H., Kasapoǧlu, N., Baykal, A., & Köseoǧlu, Y. (2009). Characterization of NiFe2O4 nanoparticles synthesized by various methods. Chemical Papers, 63, 450–455. DOI: 10.2478/s11696-009-0034-6.

    Article  CAS  Google Scholar 

  • Khaledi, A. G., Afshar, S., & Jahromi, H. S. (2012). Improving ZnAl2O4 structure by using chelating agents. Materials Chemistry and Physics, 135, 855–862. DOI: 10.1016/j. matchemphys.2012.05.070.

    Article  CAS  Google Scholar 

  • Kumar, K., Ramamoorthy, K., Chandramohan, R., & Sankaranarayanan, K. (2006). A novel growth method for ZnAl2O4 single crystals. Crystal Research and Technology, 41, 217–220. DOI: 10.1002/crat.200510562.

    Article  CAS  Google Scholar 

  • Kumar, K., Ramamoorthy, K., Koinkar, P. M., Chandramohan, R., & Sankaranarayanan, K. (2007). A novel way of modifying nano grain size by solution concentration in the growth of ZnAl2O4 thin films. Journal of Nanoparticle Research, 9, 331–335. DOI: 10.1007/s11051-006-9108-3.

    Article  CAS  Google Scholar 

  • Li, Z. S., Zhang, S. W., & Lee, W. E. (2007). Molten salt synthesis of zinc aluminate powder. Journal of the European Ceramic Society, 27, 3407–3412. DOI: 10.1016/j.jeurceramsoc. 2007.02.195.

    Article  CAS  Google Scholar 

  • Mathur, S., Veith, M., Haas, M., Shen, H., Lecerf, N., Huch, V., Hüfner, S., Haberkorn, R., Beck, H. P., & Jilavi, M. (2001). Single-source sol–gel synthesis of nanocrystalline ZnAl2O4: Structural and optical properties. Journal of the American Ceramic Society, 84, 1921–1928. DOI: 10.1111/j.1151-2916.2001.tb00938.x.

    Article  CAS  Google Scholar 

  • Motloung, S. V., Dejene, F. B., Swart, H. C., & Ntwaeaborwa, O. M. (2014). Effects of Pb2+ ions concentration on the structure and PL intensity of Pb-doped ZnAl2O4 nanocrystals synthesized using sol–gel process. Journal of Sol–Gel Science and Technology, 70, 422–427. DOI: 10.1007/s10971-014-3302-z.

    Article  CAS  Google Scholar 

  • Okal, J., & Zawadzki, M. (2013). Catalytic combustion of methane over ruthenium supported on zinc aluminate spinel. Applied Catalysis A, 453, 349–357. DOI: 10.1016/j.apcata.2012.12.040.

    Article  CAS  Google Scholar 

  • Pacewska, B., & Keshr, M. (2002). Thermal transformations of aluminum nitrate hydrate. Thermo chimica Acta, 385, 73–80. DOI: 10.1016/s0040-6031(01)00703-1.

    Article  CAS  Google Scholar 

  • Peng, T. Y., Liu, X., Dai, K., Xiao, J. R., & Song, H. B. (2006). Effect of acidity on the glycine–nitrate combustion synthesis of nano crystalline alumina powder. Materials Research Bulletin, 41, 1638–1645. DOI: 10.1016/j.materresbull.2006.02. 026.

    Article  CAS  Google Scholar 

  • Purohit, R. D., Sharma, B. P., Pillai, K. T., & Tyagi, A. K. (2001). Ultrafine ceria powders via glycine–nitrate combustion. Materials Research Bulletin, 36, 2711–2721. DOI: 10.1016/s0025-5408(01)00762-0.

    Article  CAS  Google Scholar 

  • Quintana-Solórzano, R., Valente, J. S., Hernández-Beltrán, F. J., & Castillo-Araiza, C. O. (2008). Zinc-aluminates for an in situ sulfur reduction in cracked gasoline. Applied Catalysis B, 81, 1–13. DOI: 10.1016/j.apcatb.2007.12.001.

    Article  Google Scholar 

  • Ragupathi, C., Kennedy, L. J., & Vijaya, J. J. (2014). A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate. Advanced Powder Technology, 25, 267–273. DOI: 10.1016/j.apt.2013.04.013.

    Article  CAS  Google Scholar 

  • Salem, S. (2015). Rapid combustion synthesis of pure nano-crystalline gahnite: Effect of solution pH on powder characteristics. Thermo chimica Acta, 609, 75–81. DOI: 10.1016/j.tca.2015.04.017.

    Article  CAS  Google Scholar 

  • Song, X. Y., Zheng, S. H., Zhang, J., Li, W., Chen, Q., & Cao, B. Q. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47, 4305–4310. DOI: 10.1016/j.materresbull.2012.09.013.

    Article  CAS  Google Scholar 

  • Staszak, W., Zawadzki, M., & Okal, J. (2010). Solvother-mal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion. Journal of Alloys and Compounds, 492, 500–507. DOI: 10.1016/j. jallcom.2009.11.151.

    Article  CAS  Google Scholar 

  • Toniolo, J. C., Lima, M. D., Takimi, A. S., & Bergmann, C. P. (2005). Synthesis of alumina powders by the glycine–nitrate combustion process. Materials Research Bulletin, 40, 561–571. DOI: 10.1016/j.materresbull.2004.07.019.

    Article  CAS  Google Scholar 

  • Valenzuela, M. A., Jacobs, J. P., Bosch, P., Reijne, S., Zapata, B., & Brongersma, H. H. (1997a). The influence of the preparation method on the surface structure of ZnAl2O4. Applied Catalysis A, 148, 315–324. DOI: 10.1016/s0926-860x(96)00235-9.

    Article  CAS  Google Scholar 

  • Valenzuela, M. A., Bosch, P., Aguilar-Rios, G., Montoya, A., & Schifter, I. (1997b). Comparison between sol–gel, co-precipitation and wet mixing synthesis of ZnAl2O4. Journal of Sol-Gel Science and Technology, 8, 107–110. DOI: 10.1023/a: 1026471709899.

    CAS  Google Scholar 

  • Visinescu, D., Jurca, B., Ianculescu, A., & Carp, O. (2011). Starch–A suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides. Polyhedron, 30, 2824–2831. DOI: 10.1016/j.poly.2011.08.006.

    Article  CAS  Google Scholar 

  • Wrzyszcz, J., Zawadzki, M., Trawczynski, J., Grabowska, H., & Mista, W. (2001). Some catalytic properties of hydrother-mally synthesised zinc aluminate spinel. Applied Catalysis A, 210, 263–269. DOI: 10.1016/s0926-860x(00)00821-8.

    Article  CAS  Google Scholar 

  • Wrzyszcz, J., Zawadzki, M., Trzeciak, A. M., & Ziólkowski, J. J. (2002). Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: Preparation and activity. Journal of Molecular Catalysis A, 189, 203–210. DOI: 10.1016/s1381-1169(02)00073-0.

    Article  CAS  Google Scholar 

  • Zawadzki, M. (2006). Synthesis of nanosized and microp-orous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4). Solid State Sciences, 8, 14–18. DOI: 10.1016/j. solidstatesciences.2005.08.006.

    Article  CAS  Google Scholar 

  • Zhang, L., Yan, J. H., Zhou, M. J., Yang, Y. H., & Liu, Y. N. (2013). Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres. Applied Surface Science, 268, 237–245. DOI: 10.1016/j.apsusc.2012.12.069.

    Article  CAS  Google Scholar 

  • Zhao, X. F., Wang, L., Xu, X., Lei, X. D., Xu, S. L., & Zhang, F. Z. (2012). Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nano-composite with ZnAl2O4 dispersed inside ZnO network. AIChE Journal, 58, 573–582. DOI: 10.1002/aic.12597.

    Article  CAS  Google Scholar 

  • Zhu, Z. R., Li, X. Y., Zhao, Q. D., Liu, S. M., Hu, X. J., & Chen, G. H. (2011). Facile solution synthesis and characterization of porous cubic-shaped superstructure of ZnAl2O4. Materials Letters, 65, 194–197. DOI: 10.1016/j.matlet.2010.09.085.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, S. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates. Chem. Pap. 70, 356–364 (2016). https://doi.org/10.1515/chempap-2015-0205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0205

Keywords

Navigation