Skip to main content

Advertisement

Log in

Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Biosurfactants have great advantages as an eco-friendly alternative to synthetic surfactants. Surface active properties and antioxidant activity of extracts prepared from Sapindus mukorossi, Verbascum densiflorum, Equisetum arvense, Betula pendula and Bellis perennis have been studied. The extract from Sapindus mukorossi served as a standard because it belongs to the most widely used natural surfactants. The surface active properties of these nonionic surfactants were also compared with the properties of common synthetic surfactants such as sodium lauryl sulfate (SLS) and Tween® 80. In many cases, the plant-derived surfactants showed better properties than the synthetic ones, e.g. minimum critical micelle concentration values were observed for E. arvense (0.033 g L−1), B. perennis (0.076 g L−1), or minimum surface tension reached for the extract of B. perennis (36.8 mN m−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouseoud, M., Maachi, R., & Amrane, A. (2007). Biosurfactant production from olive oil by Pseudomonas fluorescens. In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (pp. 340–347). Madrid, Spain: Formatex.

    Google Scholar 

  • Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces (6th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Alamanou, S., & Doxastakis, G. (1997). Effect of wet extraction methods on emulsifying and foaming properties of lupin seed protein isolates (Lupinus albus ssp. Graecus). Food Hydrocolloids, 11, 409–413. DOI: 10.1016/s0268-005x(97)80038-0.

    Article  CAS  Google Scholar 

  • Balakrishnan, S., Varughese, S., & Deshpande, A. P. (2006). Micellar characterisation of saponin from Sapindus mukorossi. Tenside, Surfactants, Detergents, 43, 262–268. DOI: 10.3139/113.100315.

    Article  CAS  Google Scholar 

  • Carey, E., & Stubenrauch, C. (2010). Foaming properties of mixtures of a non-ionic (C12DMPO) and anionic surfactant (C12TAB). Journal of Colloid and Interface Science, 346, 414–423. DOI: 10.1016/j.jcis.2010.03.013.

    Article  CAS  Google Scholar 

  • Ceylan, O., Ugur, A., & Sarac, N. (2014). In vitro antimicrobial, antioxidant, antibiofilm and quorum sensing inhibitory activities of Bellis perennis L. Journal of BioScience and Biotechnology, 2014, 35–42.

    Google Scholar 

  • Chen, W. J., Hsiao, L. C., & Chen, K. K. Y. (2008). Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponic biosurfactant. Process Biochemistry, 43, 488–498. DOI: 10.1016/j.procbio.2007.11.017.

    Article  Google Scholar 

  • Chen, Y. F., Yang, C. H., Chang, M. S., Ciou, Y. P., & Huang, Y. C. (2010a). Foam properties and detergent abilities of the saponins from Camellia oleifera. International Journal of Molecular Sciences, 11, 4417–4425. DOI: 10.3390/ijms11114417.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Kuo, P. L., Chen, Y. H., Huang, J. C., Ho, M. L., Lin, R. J., Chang, J. S., & Wang, H. M. (2010b). Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. Journal of the Taiwan Institute of Chemical Engineers, 41, 129–135. DOI: 10.1016/j.jtice.2009.08.005.

    Article  CAS  Google Scholar 

  • Chhetri, A. B., Watts, K. C., Rahman, M. S., & Islam, M. R. (2009). Soapnut extract as a natural surfactant for enhanced oil recovery. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 31, 1893–1903. DOI: 10.1080/15567030802462622.

    Article  CAS  Google Scholar 

  • Clarkson, J. R., Cui, Z. F., & Darton, R. C. (2000). Effect of solution conditions on protein damage in foam. Biochemical Engineering Journal, 4, 107–114. DOI: 10.1016/s1369-703x(99)00038-8.

    Article  CAS  Google Scholar 

  • Dluzewski, M., Dluzewska, E., & Kwasek, L. (1994). Comparison of foaming properties by the volumetric and conductometric methods. Polish Journal of Food and Nutrition Sciences, 3, 155–164.

    CAS  Google Scholar 

  • Eastoe, J., & Dalton, J. S. (2000). Dynamic surface tension and adsorption mechanisms surfactants at the air-water interface. Advances in Colloid and Interface Science, 85, 103–144. DOI: 10.1016/s0001-8686(99)00017-2.

    Article  CAS  Google Scholar 

  • Fendler, J. H., & Fendler, E. (1975). Catalysis in micellar and macromolecular systems. New York, NY, USA: Academic Press.

    Google Scholar 

  • Fu, Y., Lei, P., Han, Y. M., & Yan, D. (2010). Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis. Journal of Chinese Medicinal Materials, 33, 267–272.

    CAS  Google Scholar 

  • Germanò, M. P., Cacciola, F., Donato, P., Dugo, P., Certo, G., D’Angelo, V., Mondello, L., & Rapisarda, A. (2012). Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia, 83, 877–882. DOI: 10.1016/j.fitote.2012.03.021.

    Article  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2010a). Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International Journal of Molecular Sciences, 11, 4539–4555. DOI: 10.3390/ijms11114539.

    Article  CAS  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E., & Halim, M. R. (2010b). Effect of different light intensities on total phenolics and flavonoid synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897. DOI: 10.3390/ijms11103885.

    Article  CAS  Google Scholar 

  • Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101–1114. DOI: 10.3390/ijms12021101.

    Article  CAS  Google Scholar 

  • Gülçin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2004). Antioxidant activity of saponins isolated from ivy: α-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica, 70, 561–563. DOI: 10.1055/s-2004-827158.

    Article  Google Scholar 

  • Handali, S., Moghimipour, E., Kooshapour, H., Rezaee, S., & Khalili, S. (2014). In vitro cholesterol binding afinity of total sponin extracted from Glycyrrhiza glabra. Asian Journal of Pharmaceutical and Clinical Research, 7, 170–173.

    Google Scholar 

  • Harborne, J. B., & Williams, C. A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18, 310–333. DOI: 10.1039/b006257j.

    Article  CAS  Google Scholar 

  • Holmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 148–159. DOI: 10.1016/s1359-0294(01)00074-7.

    Article  CAS  Google Scholar 

  • Hong, K. J., Tokunaga, S., & Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 49, 379–387. DOI: 10.1016/s0045-6535(02)00321-1.

    Article  CAS  Google Scholar 

  • Ibrahim, M. H., & Jaafar, H. Z. E. (2013). Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules, 18, 7957–7976. DOI: 10.3390/molecules18077957.

    Article  CAS  Google Scholar 

  • Jeong, G. T., Park, E. S., Wahlig, V. L., Burapatana, V., Park, D. H., & Tanner, R. D. (2004). Effect of pH on the foam fractionation of Mimosa pudica L. seed proteins. Industrial & Engineering Chemistry Research, 43, 422–427. DOI: 10.1021/ie060318l.

    Article  CAS  Google Scholar 

  • Jian, H. L., Liao, X. X., Zhu, L. W., Zhang, W. M., & Jiang, J. X. (2011). Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. Journal of Colloid and Interface Science, 359, 487–492. DOI: 10.1016/j.jcis.2011.04.038.

    Article  CAS  Google Scholar 

  • Khan, A. M., & Shah, S. S. (2008). Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal of the Chemical Society of Pakistan, 30, 186–191.

    CAS  Google Scholar 

  • Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295–304.

    CAS  Google Scholar 

  • Li, Y., Du, Y. M., & Zou, C. (2009). Effects of pH on antioxidant and antimicrobial properties of tea saponins. European Food Research & Technology, 228, 1023–1028. DOI: 10.1007/s00217-009-1014-3.

    Article  CAS  Google Scholar 

  • Li, M. Z., Qiao, N., & Wang, K. (2013a). Influence of sodium lauryl sulfate and Tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics, 5, 508–524. DOI: 10.3390/pharmaceutics5040508.

    Article  CAS  Google Scholar 

  • Li, R., Wu, Z. L., Wang, Y. J., & Li, L. L. (2013b). Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Industrial Crops and Products, 51, 163–170. DOI: 10.1016/j.indcrop.2013.08.079.

    Article  CAS  Google Scholar 

  • Lunkenheimer, K., & Wantke, K. D. (1978). On the applicability of the du Nouy (ring) tensiometer method for the determination of surface tensions of surfactant solutions. Journal of Colloid and Interface Science, 66, 579–581. DOI: 10.1016/0021-9797(78)90079-6.

    Article  CAS  Google Scholar 

  • Lunkenheimer, K., & Malysa, K. (2003). Simple and generally applicable method of determination and evaluation of foam properties. Journal of Surfactants and Detergents, 6, 69–74. DOI: 10.1007/s11743-003-0251-8.

    Article  CAS  Google Scholar 

  • Ma, Y. B., He, Y. X., Peng, L. X., Wu, J. W., & Mi, Z. J. (2011). Study on isolation and purification of saponin from Sapindaceae with macroporous resin. Chinese Journal of Experimental Traditional Medicinal Formulae, 17, 23–25.

    Google Scholar 

  • Mahmood, M. E., & Al-Koofee, D. A. F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Global Journal of Science Frontier Research Chemistry, 13, 1–4.

    Google Scholar 

  • Mainkar, A. R., & Jolly, C. I. (2000). Evaluation of commercial herbal shampoos. International Journal of Cosmetic Science, 22, 385–391. DOI: 10.1046/j.1467-2494.2000.00047.x.

    Article  CAS  Google Scholar 

  • Máriássyová, M. (2006). Antioxidant activity of some herbal extracts in rapeseed and sunflower oils. Journal of Food and Nutrition Research, 45, 104–109.

    Google Scholar 

  • McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47, 611–649. DOI: 10.1080/10408390701289292.

    Article  CAS  Google Scholar 

  • Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., dos Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127–130. DOI: 10.1002/ptr.687.

    Article  CAS  Google Scholar 

  • Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., & Bozin, B. (2008). Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 13, 1455–1464. DOI: 10.3390/molecules13071455.

    Article  CAS  Google Scholar 

  • Mitra, S., & Dungan, S. R. (1997). Micellar properties of quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agriculture and Food Chemistry, 45, 1587–1595. DOI: 10.1021/jf960349z.

    Article  CAS  Google Scholar 

  • Mousli, R., & Tazerouti, A. (2007). Direct method of preparation of dodecanesulfonamide derivatives and some surface properties. Journal of Surfactants and Detergents, 10, 279–285. DOI: 10.1007/s11743-007-1043-5.

    Article  CAS  Google Scholar 

  • Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198. DOI: 10.1016/j.envpol.2004.06.009.

    Article  CAS  Google Scholar 

  • Mulligan, C. N. (2009). Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 14, 372–378. DOI: 10.1016/j.cocis.2009.06.005.

    Article  CAS  Google Scholar 

  • Muntaha, S. T., & Khan, M. N. (2015). Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant — a dye surfactant interaction study. Journal of Cleaner Production, 93, 145–150. DOI: 10.1016/j.jclepro.2015.01.023.

    Article  CAS  Google Scholar 

  • Murakami, M., Yamaguchi, T., Takamura, H., & Matoba, T. (2003). Effects of ascorbic acid and α-tocopherol on antioxidant activity of polyphenolic compounds. Journal of Food Science, 68, 1622–1625. DOI: 10.1111/j.1365-2621.2003.tb12302.x.

    Article  CAS  Google Scholar 

  • Nakayama, K., Fujino, H., Kasai, R., Mitoma, Y., Yata, N., & Tanaka, O. (1986). Solubilizing properties of saponins from Sapindus mukorossi Gaertn. Chemical and Pharmaceutical Bulletin, 34, 3279–3283. DOI: 10.1248/cpb.34.3279.

    Article  CAS  Google Scholar 

  • Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57–63. DOI: 10.1016/j.jfoodeng.2014.06.015.

    Article  CAS  Google Scholar 

  • Rahman, P. K. S. M., & Gakpe, E. (2008). Production, characterisation and applications of biosurfactants — Review. Biotechnology, 7, 360–370. DOI: 10.3923/biotech.2008.360.370.

    Article  CAS  Google Scholar 

  • Ribeiro, B. D., Alviano, D. S., Barreto, D. W., & Coelho, M. A. Z. (2013). Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 736–743. DOI: 10.1016/j.colsurfa.2013.08.007.

    Article  CAS  Google Scholar 

  • Rosen, J. M. (2004). Surfactants and interfacial phenomena (3rd ed.). New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Ross, J., & Miles, G. D. (1941). An apparatus for comparison of foaming properties of soaps and detergents. Journal of the American Oil Chemists’ Society, 18, 99–102. DOI: 10.1007/bf02545418.

    CAS  Google Scholar 

  • Roy, D., Kommalapati, R. R., Mandava, S. S., Valsaraj, K. T., & Constant, W. D. (1997). Soil washing potential of a natural surfactant. Environmental Science & Technology, 31, 670–675. DOI: 10.1021/es960181y.

    Article  CAS  Google Scholar 

  • Salati, S., Papa, G., & Adani, F. (2011). Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnology Advances, 29, 913–922. DOI: 10.1016/j.biotechadv.2011.07.012.

    Article  CAS  Google Scholar 

  • Siatka, T., & Kašparová, M. (2010). Seasonal variation in total phenolic and flavonoid contents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules, 15, 9450–9461. DOI: 10.3390/molecules15129450.

    Article  CAS  Google Scholar 

  • Silva, C. G., Herdeiro, R. S., Mathias, C. J., Panek, A. D., Silveira, C. S., Rodrigues, V. P., Rennó, M. N., Falcão, D. Q., Cerqueira, D. M., Minto, A. B. M., Nogueira, F. L. P., Quaresma, C. H., Silva, J. F. M., Menezes, F. S., & Eleutherio, E. C. A. (2005). Evaluation of antioxidant activity of Brazilian plants. Pharmacological Research, 52, 229–233. DOI: 10.1016/j.phrs.2005.03.008.

    Article  CAS  Google Scholar 

  • Song, S. S., Zhu, L. Z., & Zhou, W. J. (2008). Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactants. Environmental Pollution, 156, 1368–1370. DOI: 10.1016/j.envpol.2008.06.018.

    Article  CAS  Google Scholar 

  • Sparg, S. G., Light, M. E., & van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243. DOI: 10.1016/j.jep.2004.05.016.

    Article  CAS  Google Scholar 

  • Trouillas, P., Calliste, C. A., Allais, D. P., Simon, A., Marfak, A., Delage, C., & Duroux, J. L. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chemistry, 80, 399–407. DOI: 10.1016/s0308-8146(02)00282-0.

    Article  CAS  Google Scholar 

  • Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–1150. DOI: 10.1016/j.chemosphere.2004.07.048.

    Article  CAS  Google Scholar 

  • Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297. DOI: 10.1016/j.phytochem.2006.10.008.

    Article  CAS  Google Scholar 

  • von Rybinski, W. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 146–147. DOI: 10.1016/s1359-0294(01)00081-4.

    Article  Google Scholar 

  • Wu, H., Zhang, L., Wang, N., Guo, Y. Z., Weng, Z., Sun, Z. Y., Xu, D. P., Xie, Y. F., & Yao, W. R. (2014). Analysis of the bioactive components of Sapindus saponins. Industrial Crops and Products, 61, 422–429. DOI: 10.1016/j.indcrop.2014.07.026.

    Article  Google Scholar 

  • Yang, C. H., Huang, Y. C., Chen, Y. F., & Chang, M. H. (2010). Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi. Journal of Food and Drug Analysis, 18, 155–160.

    CAS  Google Scholar 

  • Yang, Y., Leser, M. E., Sher, A. A., & McClements, D. J. (2013). Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-Naturale®). Food Hydrocolloids, 30, 589–596. DOI: 10.1016/j.foodhyd.2012.08.008.

    Article  CAS  Google Scholar 

  • Yin, S. W., Chen, J. C., Sun, S. D., Tang, C. H., Yang, X. Q., Wen, Q. B., & Qi, J. R. (2011). Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chemistry, 128, 420–426. DOI: 10.1016/j.foodchem.2011.03.046.

    Article  CAS  Google Scholar 

  • Zdziennicka, A., Szymczyk, K., Krawczyk, J., & Jańczuk, B. (2012). Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria 322–323, 126–134. DOI: 10.1016/j.fluid.2012.03.018.

    Article  Google Scholar 

  • Zhou, W. J., Yang, J. J., Lou, L. J., & Zhu, L. Z. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159, 1198–1204. DOI: 10.1016/j.envpol.2011.02.001.

    Article  CAS  Google Scholar 

  • Zhou, W. J., Wang, X. H., Chen, C. P., & Zhu, L. Z. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122–128. DOI: 10.1016/j.colsurfa.2013.02.055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Tmáková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tmáková, L., Sekretár, S. & Schmidt, Š. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities. Chem. Pap. 70, 188–196 (2016). https://doi.org/10.1515/chempap-2015-0200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0200

Keywords

Navigation