Chemical Papers

, Volume 70, Issue 2, pp 172–179 | Cite as

Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier

  • Monika Baczynska
  • Martyna Rzelewska
  • Magdalena Regel-Rosocka
  • Maciej Wisniewski
Original Paper


In this study, liquid membranes denoted as polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, o-nitrophenyl octyl ether (NPOE) as a plasticiser and phosphonium ionic liquids, trihexyltetradecylphosphonium chloride (Cyphos® IL 101) and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos® IL 104), as carriers of metal ions were developed. The transport of Fe(II) and Fe(III) from chloride aqueous solutions across PIMs was investigated. It is shown that these phosphonium ionic liquids are effective carriers of Fe(III) ions through PIMs. While, for Fe(II), the highest value of extraction efficiency and recovery factor after 72 h does not exceed 40%, by contrast, the values of these parameters for Fe(III) transport ranged from 60% to almost 100%. Additionally, the results indicate the transport rate to be strongly influenced by the amount of carrier in the membrane. The highest initial flux of Fe(III) and permeability coefficient are noted for the membrane containing 40 mass % Cyphos® IL 101. However, it is shown that the transport of Fe(III) increases as the carrier content is increased then decreases at a content of the carrier equal to 40 mass %. It appears that the Fe(III)-carrier complex decomposes with difficulty at the interface of the membrane-receiving phase, hence leading to low values of recovery factor Fe(III).


iron(II) iron(III) metal ion extraction ionic liquid polymer inclusion membrane CTA matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alguacil, F. J., & Alonso, M. (2000). Iron(III) transport using a supported liquid membrane containing Cyanex 921. Hydrometallurgy, 58, 81–88. DOI:  10.1016/s0304-386x(00)00133-x.CrossRefGoogle Scholar
  2. Alguacil, F. J., Alonso, M., Lopez, F. A., & Lopez-Delgado, A. (2010). Pseudo-emulsion membrane strip dispersion (PEMSD) pertraction of chromium(VI) using Cyphos IL 101 ionic liquid as carrier. Environmental Science & Technology, 44, 7504–7508. DOI:  10.1021/es101302b.CrossRefGoogle Scholar
  3. Arias, A., Saucedo, I., Navarro, R., Gallardo, V., Martinez, M., & Guibal, E. (2011). Cadmium(II) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Reactive and Functional Polymers, 71, 1059–1070. DOI:  10.1016/j.reactfunctpolym.2011.07.008.CrossRefGoogle Scholar
  4. Baczyńska, M., & Regel-Rosocka, M. (2013). Phosphonium ionic liquids as carriers of metal ions. Przemysł Chemiczny, 92, 1574–1576.Google Scholar
  5. Baczyńska, M., Regel-Rosocka, M., Nowicki, M., & Wiśniewski, M. (2015). Effect of the structure of the polymer inclusion membranes on Zn(II) transport from chloride aqueous solution. Journal of Applied Polymer Science, 132, 42319. DOI:  10.1002/app.42319.Google Scholar
  6. Cytec Industries (2008). Cyanex 272 extractant. Retreived June 10, 2015, from
  7. Fontàs, C., Tayeb, R., Tingry, S., Hidalgo, M., & Seta, P. (2005). Transport of platinum(IV) through supported liquid membrane (SLM) and polymeric plasticized membrane (PPM). Journal of Membrane Science, 263, 96–102. DOI:  10.1016/j.memsci.2005.04.008.CrossRefGoogle Scholar
  8. Förch, R., Schönherr, H., Tobias, A., & Jenkins, A. (2009). Surface design: Applications in bioscience and nanotechnology. Weinheim, Germany: Wiley.CrossRefGoogle Scholar
  9. Guibal, E., Campos Gavilan, K., Bunio, P., Vincent, T., & Trochimczuk, A. (2008). Cyphos IL 101 (tetradecyl(trihexyl) phosphonium chloride) immobilized in biopolymer capsules fore Hg(II) recovery from HCl solutions. Separation Science and Technology, 43, 2406–2433. DOI:  10.1080/01496390802118970.CrossRefGoogle Scholar
  10. Inès, M., Almeida, G. S., Catrall, R. W., & Kolev, S. D. (2012). Recent trends in extraction and transport of metal ion using polymer inclusion membrane (PIMs). Journal of Membrane Science 415–416, 9–23. DOI:  10.1016/j.memsci.2012.06.006.Google Scholar
  11. Kogelnig, D., Regelsberger, A., Stojanovic, A., Jirsa, F., Krachler, R., & Keppler, B. K. (2011). A polymer inclusion membrane based on the ionic liquid trihexyl(tetradecyl)-phosphonium chloride and PVC for solid-liquid extraction of Zn(II) from hydrochloric acid solution. Monatshefte für Chemie — Chemical Monthly, 142, 769–772. DOI:  10.1007/s00706-011-0530-6.CrossRefGoogle Scholar
  12. Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Catrall, R. W., & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 281, 7–41. DOI:  10.1016/j.memsci.2006.03.035.CrossRefGoogle Scholar
  13. Onac, C., Korkmaz Alpoguz, H., Akcylen, E., & Yilmaz, M. (2013). Facilitated transport of Cr(VI) through polymer inclusion membrane system containing calix[4]arene derivative as carrier agent. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 50, 1013–1021. DOI:  10.1080/10601325.2013.792205.CrossRefGoogle Scholar
  14. Pośpiech, B., Walkowiak, W., & Woźniak, M. J. (2005). Application of TBP in selective removal of iron(III) in solvent extraction and transport through polymer inclusion membranes processes. Physicochemical Problems of Mineral Processing, 39, 89–98.Google Scholar
  15. Principe, F., & Demopoulous, G. P. (2004). Comparative study of iron(III) separation from zinc sulphate—sulphuric acid solutions using the organophosphorus extractants, OPAP and D2EHPA: Part I: Extraction. Hydrometallurgy, 74, 93–102. DOI:  10.1016/j.hydromet.2004.01.004.CrossRefGoogle Scholar
  16. Regel-Rosocka, M., & Szymanowski, J. (2005). Iron(II) transfer to the organic phase during zinc(II) extraction from spent pickling solutions with tributyl phosphate. Solvent Extraction and Ion Exchange, 23, 411–424. DOI:  10.1081/sei200056538.CrossRefGoogle Scholar
  17. Regel-Rosocka, M., & Wiśniewski, M. (2011). Selective removal of zinc(II) from spent pickling solution in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101. Hydrometallurgy, 110, 85–90. DOI:  10.1016/j.hydromet.2011.08.012.CrossRefGoogle Scholar
  18. Regel-Rosocka, M., Nowak, L., & Wiśniewski, M. (2012). Removal of zinc(II) and iron from chloride solutions with phosphonium ionic liquids. Separation and Purification Technology, 97, 158–163. DOI:  10.1016/j.seppur.2012.01.035.CrossRefGoogle Scholar
  19. Turanov, A. N., Karndashev, V. K., & Baulin, V. E. (2008). Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions. Russian Journal of Inorganic Chemistry, 53, 970–975. DOI:  10.1134/s0036023608060272.CrossRefGoogle Scholar
  20. Ugur, A., Sener, I., Hol, A., Alpoguz, H. K., & Elci, L. (2014). Facilitated transport of Zn(II) and Cd(II) ions through polymer inclusion membranes immobilized with a calix[4]resorcinarene derivative. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 51, 611–618. DOI:  10.1080/10601325.2014.924833.CrossRefGoogle Scholar
  21. Vázquez, M. I., Romero, V., Fontàs, C., Anticó, E., & Benavente, J. (2014). Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physicalchemical and elastic characteristics. Journal of Membrane Science, 455, 312–319. DOI:  10.1016/j.memsci.2013.12.072.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Monika Baczynska
    • 1
  • Martyna Rzelewska
    • 1
  • Magdalena Regel-Rosocka
    • 1
  • Maciej Wisniewski
    • 1
  1. 1.Institute of Chemical Technology and Engineering, Faculty of Chemical TechnologyPoznan University of TechnologyPoznanPoland

Personalised recommendations