Skip to main content
Log in

Iron cross-linked carboxymethyl cellulose—gelatin complex coacervate beads for sustained drug delivery

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The formation and smooth recovery of ibuprofen encapsulated in microcapsules using gelatin and carboxymethyl cellulose (CMC) complex coacervation without glutaraldehyde were the objectives of this investigation. The microcapsules were recovered as ionically cross-linked beads using aqueous ferric chloride in 50 vol.% of 2-propanol. A physical mixture of CMC/gelatin (FP1) and CMC alone (FP2) beads was also prepared for comparison. The drug-entrapment efficiency of complex coacervate beads (FP3-FP5) was dependent on the drug-to-polymer ratio and was in the range of 86–92 mass %. Beads prepared with the highest ratio of the drug (FP5) exhibited the lowest entrapment. FP1 and FP2 beads exhibited an entrapment efficiency of 98.5 mass % and 91.3 mass %, respectively. Infrared spectroscopy (FTIR) revealed different functional groups in complex coacervate, physical mixture and FP2 beads. Optical and scanning electron microscopy revealed the distinct appearance and surface morphology of the various beads. The stable and crystalline nature of ibuprofen in the beads was confirmed by FTIR and differential scanning calorimetry (DSC), respectively. Ibuprofen release from FP1 and FP2 beads was very slow and unsuitable for oral delivery. The bead prepared by complex coacervation (FP5) showed a better release profile over 48 h and could be developed as a sustained drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbucci, R., Magnani, A., & Consumi, M. (2000). Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33, 7475–7480. DOI: 10.1021/ma0007029.

    Article  CAS  Google Scholar 

  • Buhus, G., Peptu, C., Popa, M., & Desbrières, J. (2009). Controlled release of water soluble antibiotics by carboxymethylcellulose- and gelatin-based hydrogels crosslinked with epichlorohydrin. Cellulose Chemistry and Technology, 43, 141–151.

    CAS  Google Scholar 

  • Buzzi, V., Brudner, M., Wagner, T. M., Bazzo, G. C., Pezzin, A. P. T., & Silva, D. A. K. (2013). Caboxymetylcellulose/gelatin blends loaded with piroxicam: Preparation, characterization and evaluation of in vitro release profile. Journal of Encapsulation and Adsorption Sciences, 3, 99–107. DOI: 10.4236/jeas.2013.34012.

    Article  Google Scholar 

  • Charpentier-Valenza, D., Merle, L., Mocanu, G., Picton, L., & Muller, G. (2005). Rheological properties of hydrophobically modified carboxymethylcelluloses. Carbohydrate Polymers, 60, 87–94. DOI: 10.1016/j.carbpol.2004.11.030.

    Article  CAS  Google Scholar 

  • Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13, 123–133. DOI: 10.1016/s0928-0987(01)00095-1.

    Article  CAS  Google Scholar 

  • Deasy, P. B. (1984). Microencapsulation and related drug processes (Series: Drugs and the pharmaceutical sciences, Vol. 20). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Devi, N., & Maji, T. K. (2009). Preparation and evaluation of gelatin/sodium carboxymethyl cellulose polyelectrolyte complex microparticles for controlled delivery of isoniazid. AAPS PharmSciTech, 10, 1412–1419. DOI: 10.1208/s12249-009-9344-9.

    Article  CAS  Google Scholar 

  • Devi, N., & Maji, T. K. (2011). Study of complex coacervation of gelatin A with sodium carboxymethyl cellulose: Microencapsulation of neem (Azadirachta indica A. Juss.) seed oil (NSO). International Journal of Polymeric Materials, 60, 1091–1105. DOI: 10.1080/00914037.2011.553851.

    Article  CAS  Google Scholar 

  • Garrigues, S., Gallignani, M., & de la Guardia, M. (1993). FIA-FT-IR determination of ibuprofen in pharmaceuticals. Talanta, 40, 89–93. DOI: 10.1016/0039-9140(93)80145-h.

    Article  CAS  Google Scholar 

  • Lii, C. Y., Tomasik, P., Zaleska, H., Liaw, S. C., & Lai, V. M. F. (2002). Carboxymethyl cellulose-gelatin complexes. Carbohydrate Polymers, 50, 19–26. DOI: 10.1016/s0144-8617(01)00372-1.

    Article  CAS  Google Scholar 

  • Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86, 325–332. DOI: 10.1016/j.foodchem.2003.09.038.

    Article  CAS  Google Scholar 

  • Prasad, M. P., & Kalyanasundaram, M. (1992). Iron(III) carboxymethylcelluose as swellable erodible matrix for the controlled release of a mosquito larvicide. Journal of Controlled Release, 22, 167–172. DOI: 10.1016/0168-3659(92)90201-2.

    Article  CAS  Google Scholar 

  • Prasad, M. P., & Kalyanasundaram, M. (1993). Ionotropic crosslinking of sodium carboxymethylcellulose and sodium carboxymethylcellulose-gelatin matrices and their erosion properties. Journal of Applied Polymer Science, 49, 2075–2079. DOI: 10.1002/app.1993.070491203.

    Article  CAS  Google Scholar 

  • Rokhade, A. P., Agnihotri, S. A., Patil, S. A., Mallikarjuna, N. N., Kulkarni, P. V., & Aminabhavi, T. M. (2006). Semiinterpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate Polymers, 65, 243–252. DOI: 10.1016/j.carbpol.2006.01.013.

    Article  CAS  Google Scholar 

  • Saravanan, M., Bhaskar, K., Srinivasa Rao, G., & Dhanaraju, M. D. (2003). Ibuprofen-loaded ethylcellulose/polystyrene microspheres: An approach to get prolonged drug release with reduced burst effect and low ethylcellulose content. Journal of Microencapsulation, 20, 289–302. DOI: 10.3109/02652040309178070.

    CAS  Google Scholar 

  • Saravanan, M., & Panduranga Rao, K. (2010). Pectin-gelatin and alginate-gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydrate Polymers, 80, 808–816. DOI: 10.1016/j.carbpol.2009.12.036.

    Article  CAS  Google Scholar 

  • Saravanan, M., Thenapakiam, S., Anand, K. V., & Pushpamalar, J. (2015). Dual cross-linked carboxymethyl sago pulpgelatine complex coacervates for sustained drug delivery. Polymers, 7, 1088–1105. DOI: 10.3390/polym7061088.

    Article  Google Scholar 

  • Silverstein, R. M., & Webster, F. X. (1998). Spectrometric identification of organic compounds (6th ed.). Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J., Nho, Y., Li, J., & Wei, G. (2007). Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 265, 385–389. DOI: 10.1016/j.nimb.2007.09.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanan Muniyandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huei, G.O.S., Muniyandy, S., Sathasivam, T. et al. Iron cross-linked carboxymethyl cellulose—gelatin complex coacervate beads for sustained drug delivery. Chem. Pap. 70, 243–252 (2016). https://doi.org/10.1515/chempap-2015-0197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0197

Keywords

Navigation