Skip to main content
Log in

Synthesis of Fe—Ni—Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, trimetallic catalysts were prepared via the co-precipitation and impregnation methods. In order to investigate the effect of impregnation on the catalytic activity and crystallite size, a trimetallic catalyst, Fe—Ni—Ce, was prepared through the co-precipitation method in one set of experiments, and cerium was impregnated with the Ni—Fe mixture in the final stage of the preparation in another set. Fourier transform infrared spectroscopy was employed to confirm the formation of trimetallic catalysts and the success of the impregnation method. The Brunauer-Emmett-Teller nitrogen adsorption isotherm exhibits a high specific surface area (approximately 39 m2 g−1) for the nanoparticles obtained by the impregnation method. The crystallography and morphology of the trimetallic catalysts thus prepared were characterised by X-ray diffraction and scanning electron microscopy. UV-VIS spectroscopy and methylene blue dye degradation tests were also performed to investigate the catalytic activity of the synthesised catalysts. The crystalline size was found to be smaller for the catalysts prepared by the impregnation method. In addition, the samples synthesised using the cerium impregnation method showed superior activity in the methylene blue dye degradation test. The effect of the catalyst dosage on dye degradation, as well as the effect of the initial dye concentration on the catalyst activity, was also studied for both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguila, G., Guerrero, S., & Araya, P. (2013). Effect of the preparation method and calcination temperature on the oxidation activity of CO at low temperature on CuO—CeO2/SiO2 catalysts. Applied Catalysis A: General, 462–463, 56–63. DOI: 10.1016/j.apcata.2013.04.032.

    Article  Google Scholar 

  • Ahmed, R., Jamil, R., & Ansari, M. S. (2014). Synthesis and characterization of ternary Pt-Ni-M/C (M = Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells. IOP Conference Series: Materials Science and Engineering, 60, 012044. DOI: 10.1088/1757-899x/60/1/012044.

    Article  Google Scholar 

  • Allaedini, G., Tasirin, S. M., Aminayi, P., Yaakob, Z., & Talib, M. Z. M. (2015a). Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni—Co—Fe catalyst. Reaction Kinetics, Mechanisms and Catalysis. DOI: 10.1007/s11144-015-0897-1. (in press)

  • Allaedini, G., Aminayi, P., & Tasirin, S. M. (2015b). The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method. Journal of Nanomaterials, 961231.

  • Anderson, J. A. (2011). Supported metals in catalysis. Singapore, Singapore: World Scientific.

    Book  Google Scholar 

  • Ansari, A., & Kaushik, A. (2010). Synthesis and optical properties of nanostructured Ce(OH)4. Journal of Semiconductors, 31, 033001. DOI: 10.1088/1674-4926/31/3/033001.

    Article  Google Scholar 

  • Bae, E. Y., & Choi, W. Y. (2002). Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environmental Science & Technology, 37, 147–152. DOI: 10.1021/es025617q.

    Article  Google Scholar 

  • Bhatt, A. S., Bhat, D. K., Santosh, M. S., & Tai, C. W. (2011). Chitosan/NiO nanocomposites: a potential new dielectric material. Journal of Materials Chemistry, 21, 13490–13497. DOI: 10.1039/c1jm12011e.

    Article  CAS  Google Scholar 

  • Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Chen, J., & Phanichphant, S. (2014). Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Scientific Reports, 4, 5757. DOI: 10.1038/srep05757.

    Article  CAS  Google Scholar 

  • Chen, C., Cao, J. J., Cargnello, M., Fornasiero, P., & Gorte, R. J. (2013). High-temperature calcination improves the catalytic properties of alumina-supported Pd@ceria prepared by self assembly. Journal of Catalysis, 306, 109–115. DOI: 10.1016/j.jcat.2013.06.013.

    Article  CAS  Google Scholar 

  • Cong, Y., Zhang, J. L., Chen, F., Anpo, M., & He, D. N. (2007). Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). The Journal of Physical Chemistry C, 111, 10618–10623. DOI: 10.1021/jp0727493.

    Article  CAS  Google Scholar 

  • Contreras, C., Sugita, S., & Ramos, E. (2006). Preparation of sodium aluminate from basic aluminum sulfate. AZojomo, 8, 122. DOI: 10.2240/azojomo0220.

    CAS  Google Scholar 

  • Costa, N. J. S., & Rossi, L. M. (2012). Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 4, 5826–5834. DOI: 10.1039/c2nr31165h.

    Article  CAS  Google Scholar 

  • de Jong, K. P. (2009). Synthesis of solid catalysts. New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Dong, Y. R., Ren, X. R., Wang, M. J., He, Q., Chang, L. P., & Bao, W. R. (2013). Effect of impregnation methods on sorbents made from lignite for desulfurization at middle temperature. Journal of Energy Chemistry, 22, 783–789. DOI: 10.1016/s2095-4956(13)60104-7.

    Article  CAS  Google Scholar 

  • Ertl, G., Knözinger, H., & Weitkamp, J. (2008). Preparation of solid catalysts. New York, NY, USA: Wiley.

    Google Scholar 

  • Gaber, A., Abdel-Rahim, M., Abdel-Latief, A., & Abdel-Salam, M. N. (2014). Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. International Journal of Electrochemistry Science, 9, 81–95.

    Google Scholar 

  • Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D. M., & Prato, M. (2007). Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry, 17, 2679–2694. DOI: 10.1039/b700857k.

    Article  CAS  Google Scholar 

  • Gurbani, A., Ayastuy, J. L., González-Marcos, M. P., Herrero, J. E., Guil, J. M., & Gutiérrez-Ortiz, M. A. (2009). Comparative study of CuO—CeO2 catalysts prepared by wet impregnation and deposition-precipitation. International Journal of Hydrogen Energy, 34, 547–553. DOI: 10.1016/j.ijhydene.2008.10.047.

    Article  CAS  Google Scholar 

  • Harraz, F. A., Mohamed, R. M., Rashad, M. M., Wang, Y. C., & Sigmund, W. (2014). Magnetic nanocomposite based on titania-silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceramics International, 40, 375–384. DOI: 10.1016/j.ceramint.2013.06.012.

    Article  CAS  Google Scholar 

  • Inoishi, A., Ida, S., Uratani, S., Okano, T., & Ishihara, T. (2013). Ni—Fe—Ce(Mn,Fe)O2 cermet anode for rechargeable Fe-Air battery using LaGaO3 oxide ion conductor as electrolyte. RSC Advances, 3, 3024–3030. DOI: 10.1039/c2ra23370c.

    Article  CAS  Google Scholar 

  • Jeong, S. W., Son, S. Y., & Lee, D. H. (2010). Synthesis of multi-walled carbon nanotubes using Co—Fe—Mo/Al2O3 catalytic powders in a fluidized bed reactor. Advanced Powder Technology, 21, 93–99. DOI: 10.1016/j.apt.2009.10.008.

    Article  CAS  Google Scholar 

  • Junploy, P., Thongtem, T., Thongtem, S., & Phuruangrat, A. (2014). Decolorization of methylene blue by Ag/SrSnO3 composites under ultraviolet radiation. Journal of Nanomaterials, 2014, 261395. DOI: 10.1155/2014/261395.

    Article  Google Scholar 

  • Kalwar, N. H., Sirajuddin, Soomro, R. A., Sherazi, S. T. H., Hallam, K. R., & Khaskheli, A. R. (2014). Synthesis and characterization of highly efficient nickel nanocatalysts and their use in degradation of organic dyes. International Journal of Metals, 2014, 126103. DOI: 10.1155/2014/126103.

    Article  Google Scholar 

  • Kathyayini, H., Reddy, K. V., Nagy, J., & Nagaraju, N. (2008). Synthesis of carbon nanotubes over transition metal ions supported on Al(OH)3. Indian Journal of Chemistry, 47, 663–668.

    Google Scholar 

  • Khantimerov, S. M., Kukovitsky, E. F., Sainov, N. A., & Suleimanov, N. M. (2013). Fuel cell electrodes based on carbon nanotube/metallic nanoparticles hybrids formed on porous stainless steel pellets. International Journal of Chemical Engineering, 2013, 157098. DOI: 10.1155/2013/157098.

    Article  Google Scholar 

  • Kumar, M., & Ando, Y. (2010). Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 10, 3739–3758. DOI: 10.1166/jnn.2010.2939.

    Article  CAS  Google Scholar 

  • Lee, S., & Choi, S. U. S. (1996). Application of metallic nanoparticle suspensions in advanced cooling systems. In Proceedings of the International Mechanical Engineering Congress and Exhibition, November 17–22, 1996. Atlanta, GA, USA: Argonne National Lab.

    Google Scholar 

  • Li, Y., Cui, R. L., Ding, L., Liu, Y., Zhou, W. W., Zhang, Y., Jin, Z., Peng, F., & Liu, J. (2010). How catalysts affect the growth of single-walled carbon nanotubes on substrates. Advanced Materials, 22, 1508–1515. DOI: 10.1002/adma.200904366.

    Article  CAS  Google Scholar 

  • Li, D. L., Sakai, S., Nakagawa, Y., & Tomishige, K. (2012). FTIR study of CO adsorption on Rh/MgO modified with Co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Physical Chemistry Chemical Physics, 14, 9204–9213. DOI: 10.1039/c2cp41050h.

    Article  CAS  Google Scholar 

  • Lu, A. H., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46, 1222–1244. DOI: 10.1002/anie.200602866.

    Article  CAS  Google Scholar 

  • Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., & Kohno, M. (2002). Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 360, 229–234. DOI: 10.1016/s0009-2614(02)00838-2.

    Article  CAS  Google Scholar 

  • McCready, D. E., Mattigod, S. V., Young, J. S., & McGrail, B. P. (2004). X-ray powder diffraction data for Na 8 (AlSiO 4 )6(ReO 4 ) 2 . Richland, WA, USA: P. N. N. L.

    Google Scholar 

  • Misi, S. E. E., Ramli, A., & Rahman, F. H. (2011). Characterization of the structure feature of bimetallic Fe—Ni catalysts. Journal of Applied Sciences, 11, 1297–1302. DOI: 10.3923/jas.2011.1297.1302.

    Article  CAS  Google Scholar 

  • Mohamed, R. M., Mkhalid, I. A., Baeissa, E. S., & Al-Rayyani, M. A. (2012). Photocatalytic degradation of methylene blue by Fe/ZnO/SiO2 nanoparticles under visiblelight. Journal of Nanotechnology, 2012, 329082. DOI: 10.1155/2012/329082.

    Google Scholar 

  • Morss, L. R., Lewis, M. A., Richmann, M. K., & Lexa, D. (2000). Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form. Journal of Alloys and Compounds, 303–304, 42–48. DOI: 10.1016/s09258388(00)00601-0.

    Article  Google Scholar 

  • Mou, X. L., Zhang, B. S., Li, Y., Yao, L. D., Wei, X. J., Su, D. S., & Shen, W. J. (2012). Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angewandte Chemie International Edition, 51, 2989–2993. DOI: 10.1002/anie.201107113.

    Article  CAS  Google Scholar 

  • Nunan, J. G. (2000). U.S. Patent No. 6,040,265. Washington, DC, USA: US Patent and Trademark Office.

  • Ostafin, A., Hoefelmeyer, J., Philippot, K., Pal, T., Knecht, M., Liu, P., & Alonso, F. (2014). Metal nanoparticles for catalysis: Advances and applications (Vol. 17). London, UK: Royal Society of Chemistry.

    Google Scholar 

  • Paganini, M. C., Chiesa, M., Giamello, E., Coluccia, S., Martra, G., Murphy, D. M., & Pacchioni, G. (1999). Colour centres at the surface of alkali-earth oxides. A new hypothesis on the location of surface electron traps. Surface Science, 421, 246–262. DOI: 10.1016/s0039-6028(98)00795-x.

    Article  CAS  Google Scholar 

  • Pérez-Mendoza, M., Valles, C., Maser, W., Martinez, M., Langlois, S., Sauvajol, J., & Benito, A. (2005). Ni—Y/Mo catalyst for the large-scale CVD production of multi-wall carbon nanotubes. Carbon, 43, 3034–3037. DOI: 10.1016/j.carbon.2005.05.048.

    Article  Google Scholar 

  • Peternel, I. T., Koprivanac, N., Božić, A. M. L., & Kušić, H. M. (2007). Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials, 148, 477–484. DOI: 10.1016/j.jhazmat.2007.02.072.

    Article  CAS  Google Scholar 

  • Pirola, C., Di Fronzo, A., Comazzi, A., Galli, F., Di Michele, A., & Bianchi, C. (2013). Co based bimetallic catalysts for Fischer-Tropsch synthesis prepared by high power ultrasound. In Proceedings of the Europacat European Congress on Catalysis, September 1–6, 2013, Lyon, France: Institutional Research Information System.

    Google Scholar 

  • Potti, P. R., & Srivastava, V. C. (2013). Effect of dopants on ZnO mediated photocatalysis of dye bearing wastewater: A review. Materials Science Forum, 757, 165–174. DOI: 10.4028/www.scientific.net/MSF.757.165.

    Article  Google Scholar 

  • Qi, S. C., Wei, X. Y., Zong, Z. M., & Wang, Y. K. (2013). Application of supported metallic catalysts in catalytic hydrogenation of arenes. RSC Advances, 3, 14219–14232. DOI: 10.1039/c3ra40848e.

    Article  CAS  Google Scholar 

  • Sarkar, A., Dozier, A. K., Graham, U. M., Thomas, G., O’Brien, R. J., & Davis, B. H. (2007). Precipitated iron Fischer-Tropsch catalyst: Effect of carbidization on the morphology of iron oxyhydroxide nanoneedles. Applied Catalysis A: General, 326, 55–64. DOI: 10.1016/j.apcata.2007.03.034.

    Article  CAS  Google Scholar 

  • Shanthi, M., & Kuzhalosai, V (2012). Photocatalytic degradation of an azo dye, Acid Red 27, in aqueous solution using nano ZnO. Indian Journal of Chemistry, 51, 428–434.

    Google Scholar 

  • Sharma, V K., Siskova, M. K., & Zboril, R. (2013). Magnetic bimetallic Fe/Ag nanoparticles: Decontamination and antimicrobial agents. In R. A. Doong, V K. Sharma, & H. Kim (Eds.). Interactions of nanomaterials with emerging environmental contaminants (Vol. 1150, pp. 193–209). Washington, DC, USA: American Chemical Society.

    Chapter  Google Scholar 

  • Síma, J., & Hasal, P. (2013). Photocatalytic degradation of textile dyes in a TiO2/UV system. Chemical Engineering, 32, 79–84. DOI: 10.3303/cet1332014.

    Google Scholar 

  • Solomon, R., Lydia, I. S., Merlin, J. P., & Venuvanalingam, P. (2012). Enhanced photocatalytic degradation of azo dyes using nano Fe3O4. Journal of the Iranian Chemical Society, 9, 101–109. DOI: 10.1007/s13738-011-0033-8.

    Article  CAS  Google Scholar 

  • Suib, S. L. (2013). New and future developments in catalysis: Catalysis for remediation and environmental concerns. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Tessonnier, J. P., & Su, D. S. (2011). Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem, 4, 824–847. DOI: 10.1002/cssc.201100175.

    Article  CAS  Google Scholar 

  • Tkachev, A. G., Melezhik, A. V., Smykov, M. A., Filatova, E. Y., Shuklinov, A. V., D’yachkova, T. P., Stolyarov, A., & Ivanova, I. V. (2012). Synthesis of multi-walled carbon nanotube bundles on the Fe—Co—Mo/Al2O3 catalyst. Theoretical Foundations of Chemical Engineering, 46, 406–412. DOI: 10.1134/s0040579511050150.

    Article  CAS  Google Scholar 

  • Velmurugan, K., Venkatachalapathy, V. S. K., & Sendhilnathan, S. (2010). Synthesis of nickel zinc iron nanoparticles by coprecipitation technique. Materials Research, 13, 299–303. DOI: 10.1590/s1516-14392010000300005.

    Article  CAS  Google Scholar 

  • Vinu, R., & Madras, G. (2010). Environmental remediation by photocatalysis. Journal of the Indian Institute of Science, 90, 189–230.

    CAS  Google Scholar 

  • Wildgoose, G. G., Banks, C. E., & Compton, R. G. (2006). Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small, 2, 182–193. DOI: 10.1002/smll.200500324.

    Article  CAS  Google Scholar 

  • Wrobleski, J. T., & Boudart, M. (1992). Preparation of solid catalysts: an appraisal. Catalysis Today, 15, 349–360. DOI: 10.1016/0920-5861(92)85002-4.

    Article  CAS  Google Scholar 

  • Wu, H. T., Hu, R. H., Zhou, T. T., Li, C., Meng, W. W., & Yang, J. (2015). A novel efficient boron-doped LaFeO3 photocatalyst with large specific surface area for phenol degradation under simulated sunlight. CrystEngComm, 17, 3859–3865. DOI: 10.1039/c5ce00288e.

    Article  CAS  Google Scholar 

  • Zhang, H., Zong, R. L., & Zhu, Y. F. (2009). Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. The Journal of Physical Chemistry C, 113, 4605–4611. DOI: 10.1021/jp810748u.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghazaleh Allaedini or Siti M. Tasirin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaedini, G., Tasirin, S.M. & Aminayi, P. Synthesis of Fe—Ni—Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation. Chem. Pap. 70, 231–242 (2016). https://doi.org/10.1515/chempap-2015-0190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0190

Keywords

Navigation