Skip to main content
Log in

Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Palladium (Pd) nanoparticles were prepared using the phase transfer method and coated with alkylamines as stabilizing agents stably dispersed in nonpolar solvents. Spherical Pd nanoparticles with an average diameter of 4 nm and a relatively narrow size distribution were obtained using hexylamine or dodecylamine, and they were successfully incorporated in microemulsion-based gelatin organogel (OG); also, an OG network containing Pd nanoparticles was prepared via drying. For the Mizoroki-Heck cross-coupling reaction of iodobenzene with methyl acrylate in supercritical carbon dioxide, the Pd nanoparticles in the OG network exhibited much higher reactivity than those in powder state. Preparation conditions of OG (e.g., gelatin concentration) affected the apparent reactivity of the supported Pd nanoparticles. The Pd nanoparticles in the OG network with high gelatin concentration were recycled with no appreciable change of reactivity. In contrast, the reactivity of the Pd nanoparticles with low gelatin concentration decreased during recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, F., Beletskaya, I. P., & Yus, M. (2005). Non-conventional methodologies for transition-metal catalysed carbon-carbon coupling: a critical overview. Part 1: The Heck reaction. Tetrahedron, 61, 11771–11835. DOI: 10.1016/j.tet.2005.08.054.

    Article  CAS  Google Scholar 

  • Atkinson, P. J., Grimson, M. J., Heenan, R. K., Howe, A. M., & Robinson, B. H. (1989). Structure of microemulsion-based organo-gels. Journal of Chemical Society, Chemical Communications, 1989, 1807–1809. DOI: 10.1039/c39890001807.

    Article  Google Scholar 

  • Baiker, A. (1999). Supercritical fluids in heterogeneous catalysis. Chemical Reviews, 99, 453–473. DOI: 10.1021/cr970090z.

    Article  CAS  Google Scholar 

  • Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, 1994, 801–802. DOI: 10.1039/c39940000801.

    Article  Google Scholar 

  • Cassol, C. C., Umpierre, A. P., Machado, G., Wolke, S. I., & Dupont, J. (2005). The role of Pd nanoparticles in ionic liquid in the Heck reaction. Journal of the American Chemical Society, 127, 3298–3299. DOI: 10.1021/ja0430043.

    Article  CAS  Google Scholar 

  • Chtchigrovsky, M., Lin, Y., Ouchaou, K., Chaumontet, M., Robitzer, M., Quignard, F., & Taran, F. (2012). Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki-Miyaura reaction. Chemistry of Materials, 24, 1505–1510. DOI: 10.1021/cm3003595.

    Article  CAS  Google Scholar 

  • Cuenya, B. R. (2010). Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 518, 3127–3150. DOI: 10.1016/j.tsf.2010.01.018.

    Article  CAS  Google Scholar 

  • Djakovitch, L., & Koehler, K. (2001). Heck reaction catalyzed by Pd-modified zeolites. Journal of the American Chemical Society, 123, 5990–5999. DOI: 10.1021/ja001087r.

    Article  CAS  Google Scholar 

  • Firouzabadi, H., Iranpoor, N., & Ghaderi, A. (2011). Gelatin as a bioorganic reductant, ligand and support for palladium nanoparticles. Application as a catalyst for ligand-and amine-free Sonogashira-Hagihara reaction. Organic & Biomolecular Chemistry, 9, 865–871. DOI: 10.1039/c0ob00253d.

    Article  CAS  Google Scholar 

  • Gopidas, K. R., Whitesell, J. K., & Fox, M. A. (2003). Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Letters, 3, 1757–1760. DOI: 10.1021/nl0348490.

    Article  CAS  Google Scholar 

  • Haering, G., & Luisi, P. L. (1986). Hydrocarbon gels from water-in-oil microemulsions. The Journal of Physical Chemistry, 90, 5892–5895. DOI: 10.1021/j100280a086.

    Article  CAS  Google Scholar 

  • Jessop, P. G., Ikariya, T., & Noyori, R. (1999). Homogeneous catalysis in supercritical fluids. Chemical Reviews, 99, 475–494. DOI: 10.1021/cr970037a.

    Article  CAS  Google Scholar 

  • Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chemistry of Materials, 14, 1445–1447. DOI: 10.1021/cm011625e.

    Article  CAS  Google Scholar 

  • Kantaria, S., Rees, G. D., & Lawrence, M. J. (1999). Gelatinstabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. Journal of Controlled Release, 60, 355–365. DOI: 10.1016/s0168-3659(99)00092-9.

    Article  CAS  Google Scholar 

  • Li, Z. P., Gao, J., Xing, X. T., Wu, S. Z., Shuang, S. M., Dong, C., Paau, M. C., & Choi, M. M. F. (2010). Synthesis and characterization of n-alkylamine-stabilized palladium nanoparticles for electrochemical oxidation of methane. The Journal of Physical Chemistry C, 114, 723–733. DOI: 10.1021/jp907745v.

    Article  CAS  Google Scholar 

  • Mehnert, C. P. (1997). Palladium-grafted mesoporous MCM-41 material as heterogeneous catalyst for Heck reactions. Chemical Communications, 1997, 2215–2216. DOI: 10.1039/a705104b.

    Article  Google Scholar 

  • Meric, P., Yu, K. M. K., & Tsang, S. C. (2004). Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide. Langmuir, 20, 8537–8545. DOI: 10.1021/la049549s.

    Article  CAS  Google Scholar 

  • Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 95, 2457–2483. DOI: 10.1021/cr00039a007.

    Article  CAS  Google Scholar 

  • Mondal, J., Modak, A., & Bhaumik, A. (2011). One-pot efficient Heck coupling in water catalyzed by palladium nanoparticles tethered into mesoporous organic polymer. Journal of Molecular Catalysis A: Chemical, 350, 40–48. DOI: 10.1016/j.molcata.2011.09.002.

    Article  CAS  Google Scholar 

  • Nagayama, K., Katakura, R., Hata, T., Naoe, K., & Imai, M. (2008). Reactivity of Candida rugosa lipase in cetyltrimethylammonium bromide microemulsion-gelatin complex organogels. Biochemical Engineering Journal, 38, 274–276. DOI: 10.1016/j.bej.2007.08.015.

    Article  CAS  Google Scholar 

  • Naoe, K., Kataoka, M., & Kawagoe, M. (2010). Preparation of water-soluble palladium nanocrystals by reverse micelle method: Digestive ripening behavior of mercaptocarboxylic acids as stabilizing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364, 116–122. DOI: 10.1016/j.colsurfa.2010.05.004.

    Article  CAS  Google Scholar 

  • Narayanan, R., & El-Sayed, M. A. (2003). Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. Journal of the American Chemical Society, 125, 8340–8347. DOI: 10.1021/ja035044x.

    Article  CAS  Google Scholar 

  • Negishi, E. I., & Anastasia, L. (2003). Palladium-catalyzed alkynylation. Chemical Reviews, 103, 1979–2018. DOI: 10.1021/cr020377i.

    Article  CAS  Google Scholar 

  • Nutt, M. O., Hughes, J. B., & Wong, M. S. (2005). Designing Pd-on-Au bimetallic nanoparticle catalysis for trichloroethane hydrochchlorination. Environmental Science & Technology, 39, 1346–1353. DOI: 10.1021/es048560b.

    Article  CAS  Google Scholar 

  • Rao, C. R. K., Lakshminarayanan, V., & Trivedi, D. C. (2006). Synthesis and characterization of lower size, laurylamine protected palladium nanoparticles. Materials Letters, 60, 3165–3169. DOI: 10.1016/j.matlet.2006.02.091.

    Article  CAS  Google Scholar 

  • Saffarzadeh-Matin, S., Kerton, F. M., Lynam, J. M., & Rayner, C. M. (2006). Formation and catalytic activity of Pd nanoparticles on silica in supercritical CO2. Green Chemistry, 8, 965–971. DOI: 10.1039/b607118j.

    Article  CAS  Google Scholar 

  • Sagiri, S. S., Behera, B., Pal, K., & Basak, P. (2013). Lanolin-based organogels as a matrix for topical drug delivery. Journal of Applied Polymer Science, 128, 3831–3839. DOI: 10.1002/app.38590.

    Article  CAS  Google Scholar 

  • Tanaka, H., Uenishi, M., Taniguchi, M., Tan, I., Narita, K., Kimura, M., Kaneko, K., Nishihata, Y., & Mizuki, J. (2006). The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catalysis Today, 117, 321–328. DOI: 10.1016/j.cattod.2006.05.029.

    Article  CAS  Google Scholar 

  • Wikander, K., Petit, C., Holmberg, K., & Pileni, M. P. (2006). Size control and growth process of alkylamine-stabilized platinum nanocrystals: a comparison between the phase transfer and reverse micelles methods. Langmuir, 22, 4863–4868. DOI: 10.1021/la060163m.

    Article  CAS  Google Scholar 

  • Xue, P. C., Lu, R., Li, D. M., Jin, M., Tan, C. H., Bao, C. Y., Wang, Z. M., & Zhao, Y. Y. (2004). Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir, 20, 11234–11239. DOI: 10.1021/la048582b.

    Article  CAS  Google Scholar 

  • Yang, L., Guihen, E., Holmes, J. D., Loughran, M., O’Sullivan, G. P., & Glennon, J. D. (2005). Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Analytical Chemistry, 77, 1840–1846. DOI: 10.1021/ac048544x.

    Article  CAS  Google Scholar 

  • Yeung, L. K., Lee, C. T., Jr., Johnston, K. P., & Crooks, R. M. (2001). Catalysis in supercritical CO2 using dendrimerencapsulated palladium nanoparticles. Chemical Communications, 2001, 2290–2291. DOI: 10.1039/b106594g.

    Article  Google Scholar 

  • Zamborini, F. P., Gross, S. M., & Murray, R. W. (2001). Synthesis, characterization, reactivity, and electrochemistry of palladium monolayer protected clusters. Langmuir, 17, 481–488. DOI: 10.1021/la0010525.

    Article  CAS  Google Scholar 

  • Zhao, X. Y., Cao, Q., Zheng, L. Q., & Zhang, G. Y. (2006). Rheological properties and microstructures of gelatin-containing microemulsion-based organogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 67–73. DOI: 10.1016/j.colsurfa.2006.02.051.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumitsu Naoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoe, K., Ando, T., Kawasaki, K. et al. Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide. Chem. Pap. 70, 164–171 (2016). https://doi.org/10.1515/chempap-2015-0189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0189

Keywords

Navigation