Skip to main content
Log in

Effect of active acidic compounds on storage stability of coker naphtha

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Coker naphtha was separated into ten distillation fractions equal in volume via Engler distillation. It was found that the mercaptan sulphur compounds were mainly concentrated in the lighter fractions, whereas the basic nitrogen compounds were concentrated in the heavier fractions. The gum content increased gradually with increasing the boiling point of each fraction after storage for 21 days under ambient conditions (25°C, 101 kPa). The active organic acidic compounds in coker naphtha extracted with aqueous solution of 20 mass % NaOH represented 0.26 mass %. The GC-MS analysis of the active organic acidic compounds showed the amounts of small molecule thiols, thiophenols (including benzyl mercaptan) and phenolic compounds to be 2.6%, 4.4% and 90.0%, respectively. After removal of the active acidic compounds by caustic scrubbing, the increase in the rate of gum formation was much slower than that of the blank coker naphtha after 27 days of storage under ambient conditions, indicating that the effect of these acidic compounds on the gum formation is more significant than with basic nitrogen compounds. It is demonstrated that the storage stability of coker naphtha was decreased in the presence of large amounts of phenolic compounds, which may accelerate the acid-catalysed polymerisation of olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asomaning, S. (2006). The role of olefins in fouling of heat exchangers. M.S. thesis, The University of British Columbia, Vancouver, Canada.

    Google Scholar 

  • American Society for Testing and Materials (2008). ASTM standard: Diene value by maleic anhydride addition reaction, ASTM International. ASTM UOP326-08. West Conshohocken, PA, USA.

    Google Scholar 

  • American Society for Testing and Materials (2011a). ASTM standard: Standard test method for base number of petroleum products by potentiometric perchloric acid titration. ASTM D2896-11. West Conshohocken, PA, USA. DOI: 10.1520/d2896-11.

    Google Scholar 

  • American Society for Testing and Materials (2011b). ASTM standard: Standard test method for acid number of petroleum products by potentiometric titration. ASTM D664-11a. West Conshohocken, PA, USA. DOI: 10.1520/d0664-11a.

    Google Scholar 

  • American Society for Testing and Materials (2012a). ASTM standard: Pressure equipment manufacture standard test method for determination of total sulfur in light hydrocarbons, spark ignition engine fuel, diesel engine fuel, and engine oil by ultraviolet fluorescence. ASTM D5453-12. West Conshohocken, PA, USA. DOI: 10.1520/d5453-12.

    Google Scholar 

  • American Society for Testing and Materials (2012b). ASTM standard: Standard test method for nitrogen in petroleum and petroleum products by boat-inlet chemiluminescence. ASTM D5762-12.. West Conshohocken, PA, USA. DOI: 10.1520/d5762-12.

    Google Scholar 

  • American Society for Testing and Materials (2012c). ASTM standard: Standard test method for bromine numbers of petroleum distillates and commercial aliphatic olefins by electrometric titration. ASTM D1159-07(2012). West Conshohocken, PA, USA. DOI: 10.1520/d1159-07r12.

    Google Scholar 

  • American Society for Testing and Materials (2012d). ASTM standard: Standard test method for gum content in fuels by jet evaporation. ASTM D381-12. West Conshohocken, PA, USA. DOI: 10.1520/d0381-12.

    Google Scholar 

  • American Society for Testing and Materials (2012e). ASTM standard: Standard test method for distillation of petroleum products at atmospheric pressure. ASTM D86-12. West Conshohocken, PA, USA. DOI: 10.1520/d0086-12.

    Google Scholar 

  • American Society for Testing and Materials (2013). ASTM standard: Standard test method for (thiol mercaptan) sulfur in gasoline, kerosine, aviation turbine, and distillate fuels (potentiometric method). ASTM D3227-13. West Conshohocken, PA, USA. DOI: 10.1520/d3227.

    Google Scholar 

  • Danehy, J. P., & Parameswaran, K. N. (1968). Acidic dissociation constants of thiols. Journal of Chemical & Engineering Data, 13, 386–389. DOI: 10.1021/je60038a025.

    Article  CAS  Google Scholar 

  • Daniel, S. R., & Heneman, F. C. (1983). Deposit formation in liquid fuels 4. Effect of selected organo-sulphur compounds on the stability of Jet A fuel. Fuel, 62, 1265–1268. DOI: 10.1016/s0016-2361(83)80007-6.

    Article  CAS  Google Scholar 

  • Edwards, K. E., Qian, K. N., Wang, F. C., & Siskin, M. (2005). Quantitative analysis of conjugated dienes in hydrocarbon feeds and products. Energy & Fuels, 19, 2034–2040. DOI: 10.1021/ef0500540.

    Article  CAS  Google Scholar 

  • Groce, B. C. (1996). Chemical, mechanical treatment options reduce hydroprocessor fouling. Oil & Gas Journal, 94, 81–86.

    CAS  Google Scholar 

  • Hazlett, R. N., & Power, A. J. (1989). Phenolic compounds in Bass Strait distillate fuels: their effect on deposit formation. Fuel, 68, 1112–1117. DOI: 10.1016/0016-2361(89)90180-4.

    Article  CAS  Google Scholar 

  • Hashemi, R., & Brown, R. L., Jr. (1992). Heat exchanger fouling causes problems in gas and liquid systems. In Proceedings of American Filtration Society Seminar, May 11–13, 1992 (pp. 417–420). New York, NY, USA: Butterworth-Heinemann.

    Google Scholar 

  • Ibrahim, H. A. (2012). Fouling in heat exchangers. In V. N. Katsikis (Ed.), Matlab-a fundamental tool for scientific computing and engineering applications (Vol. 3, pp. 57–96). Rijeka, Croatia: InTech. DOI: 10.5772/46462.

    Google Scholar 

  • Jencks, W. P., & Regenstein, J. (2010). Ionization constants of acids and bases. In L. L. Roger, & M. M. Fiona (Eds.), Handbook of biochemistry and molecular biology (pp. 602–603). Boca Raton, FL, USA: CRC Press. DOI: 10.1201/b10501-74.

    Google Scholar 

  • Kawahara, F. K. (1965). Composition of gum in cracked naphtha. Industrial & Engineering Chemistry Product Research and Development, 4, 7–9. DOI: 10.1021/i360013a003.

    Article  CAS  Google Scholar 

  • Khalafova, I. A., Guseinova, A. D., Poladov, F. M., & Yunusov, S. G. (2012). Catalytic upgrading of coking gasoline fraction. Chemistry and Technology of Fuels and Oils, 48, 286–291. DOI: 10.1007/s10553-012-0370-z.

    Article  CAS  Google Scholar 

  • Kreevoy, M. M., Harper, E. T., Duvall, R. E., Wilgus, H. S., III, & Ditsch, L. T. (1960). Inductive effects on the acid dissociation constants of mercaptans. Journal of the American Chemical Society, 82, 4899–4902. DOI: 10.1021/ja01503a037.

    Article  CAS  Google Scholar 

  • Lengyel, A., Magyar, S., & Hancsók, J. (2009). Upgrading of delayed coker light naphtha in a crude oil refinery. Petroleum & Coal, 51, 80–90.

    CAS  Google Scholar 

  • Lengyel, A., Magyar, S., Kalló, D., & Hancsók, J. (2010). Catalytic coprocessing of delayed coker light naphtha with light straight-run naphtha/FCC gasoline. Petroleum Science and Technology, 28, 946–954. DOI: 10.1080/10916460902937059.

    Article  CAS  Google Scholar 

  • Lindstrom, T. H., Lévesque, F., & Cathcart, N. (2003). Protect desulfurization catalyst with prefiltration systems. Hydrocarbon Processing, 82, 49–51.

    CAS  Google Scholar 

  • Meguerian, G. H., & Tom, T. B. (1957). U.S. Patent No. 2,795,531. Washington, D.C.: USA. U.S. Patent and Trademark Office.

  • Morris, R. E., & Mushrush, G. W. (1991). Fuel instability model studies: the liquid-phase cooxidation of thiols and indene by oxygen. Energy & Fuels, 5, 744–748. DOI: 10.1021/ef00029a021.

    Article  CAS  Google Scholar 

  • Offenhauer, R. D., Brennan, J. A., & Miller, R. C. (1957). Sediment formation in catalytically cracked distillate fuel oils. Industrial & Engineering Chemistry, 49, 1265–1266. DOI: 10.1021/ie50572a032.

    Article  CAS  Google Scholar 

  • Oswald, A. A., & Noel, F. (1961). Role of pyrroles in fuel instability. Journal of Chemical & Engineering Data, 6, 294–301. DOI: 10.1021/je60010a034.

    Article  CAS  Google Scholar 

  • Sanford, E. C., & Kirchem, R. P. (1988). Improved catalyst loading reduces guard reactor fouling. Oil & Gas Journal, 86, 35–41.

    CAS  Google Scholar 

  • Solmanov, P. S., Maximov, N. M., Eremina, Y. V., Zhilkina, E. O., Dryaglin, Y. Y., & Tomina, N. N. (2013). Hydrotreating of mixtures of diesel fractions with gasoline and light coker gas oil. Petroleum Chemistry, 53, 177–180. DOI: 10.1134/s0965544113030109.

    Article  CAS  Google Scholar 

  • Taylor, W. F. (1974). Deposit formation from deoxygenated hydrocarbons. I. General features. Industrial & Engineering Chemistry Product Research Development, 13, 133–138. DOI: 10.1021/i360050a011.

    Article  CAS  Google Scholar 

  • Taylor, W. F. (1976). Deposit formation from deoxygenated hydrocarbons. II. Effect of trace sulfur compounds. Industrial & Engineering Chemistry Product Research and Development, 15, 64–68. DOI: 10.1021/i360057a012.

    Article  CAS  Google Scholar 

  • Taylor, W. F., & Frankenfeld, J. W. (1978). Deposit formation from deoxygenated hydrocarbons. 3. Effects of trace nitrogen and oxygen compounds. Industrial & Engineering Chemistry Product Research and Development, 17, 86–90. DOI: 10.1021/i360065a021.

    Article  CAS  Google Scholar 

  • Vasileva, T., Stanulov, K., & Nenkova, S. (2008). Phenolic antioxidants for fuels. Journal of the University of Chemical Technology and Metallurgy, 43, 65–68.

    CAS  Google Scholar 

  • Wallace, T. J., & Schriesheim, A. (1962). Solvent effects in the base-catalyzed oxidation of mercaptans with molecular oxygen. The Journal of Organic Chemistry, 27, 1514–1516. DOI: 10.1021/jo01052a005.

    Article  CAS  Google Scholar 

  • Wallace, T. J., Schriesheim, A., Hurwitz, H., & Glaser, M. B. (1964). Base-catalyzed oxidation of mercaptans in presence of inorganic transition metal complexes. Industrial & Engineering Chemistry Process Design and Development, 3, 237–241. DOI: 10.1021/i260011a010.

    Article  CAS  Google Scholar 

  • Worstell, J. H., Daniel, S. R., & Frauenhoff, G. (1981). Deposit formation in liquid fuels. 3. The effect of selected nitrogen on diesel fuel. Fuel, 60, 485–487. DOI: 10.1016/00162361(81)90109-5.

    Article  CAS  Google Scholar 

  • Yap, S., Dranoff, J., & Panchal, C. B. (1995). Fouling formation of an olefin in the presence of oxygen and thiophenol. In Proceedings of Fouling Mitigation of Industrial Heat-Exchange Equipment, June 18–23, 1995 (pp. 491–501). New York, NY, USA: Begell House.

    Google Scholar 

  • Yaws, C. L. (2014). Critical properties and acentric factor — organic compounds. In C. L. Yaws (Ed.), Thermophysical properties of chemicals and hydrocarbons (pp. 23–33). New York, NY, USA: Gulf Professional Publishing. DOI: 10.1016/b978-0-323-28659-6.00001-x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, FX., Jiang, H. et al. Effect of active acidic compounds on storage stability of coker naphtha. Chem. Pap. 70, 180–187 (2016). https://doi.org/10.1515/chempap-2015-0180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0180

Keywords

Navigation