Chemical Papers

, Volume 69, Issue 12, pp 1608–1616 | Cite as

Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin

  • Chuan-Jie Cheng
  • Xu Zhang
  • Xiong-Xiong Bai
  • Jin Li
  • Xing-Xing Cao
  • Jing-Lan Wang
Original Paper

Abstract

A benzophenone-containing SET-LRP initiator based on renewable and abundant cardanol was synthesised in 71 % yield using the selective etherification reaction. Next, methyl methacrylate (MMA) as a monomer was polymerised under SET-LRP conditions using the newly prepared initiator to prepare cardanol-end poly(methyl methacrylate) (PMMA). The kinetic results of the polymerisation indicated that the reaction was controllable when the monomer conversion was lower than approximately 50 %, and the molecular masses of PMMA measured by GPC were higher than the theoretical values while the monomer conversion was more than 50 %. In addition, most of the carbon-carbon double bonds of the side hydrocarbon chain of the end-cardanol group in the PMMA were kept intact from 1H NMR spectrum characterisation. Accordingly, when the cardanol-end PMMA together with a tertiary amine-containing cardanol derivative was irradiated by UV light, the corresponding UV-cured resin was obtained. The chemical resistance and hardness of the UV-cured film were enhanced with the increasing irradiation time.

Keywords

cardanol SET-LRP photo-active UV-cured resin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2017_690121608_MOESM1_ESM.doc (1.5 mb)
Supplementary material, approximately 1550 KB.

References

  1. Balachandran, V. S., Jadhav, S. R., Vemula, P. K., & John, G. (2013). Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chemical Society Reviews, 42, 427–438. DOI:  10.1039/c2cs35344j.CrossRefGoogle Scholar
  2. Bloise, E., Becerra-Herrera, M., Mele, G., Sayago, A., Carbone, L., D’Accolti, L., Mazzetto, S. E., & Vasapollo, G. (2014). Sustainable preparation of cardanol-based nanocarriers with embedded natural phenolic compounds. ACS Sustainable Chemistry & Engineering, 2, 1299–1304. DOI:  10.1021/sc500123r.CrossRefGoogle Scholar
  3. Chen, G. Q., & Patel, M. K. (2012). Plastics derived from biological sources: Present and future: A technical and environmental review. Chemical Reviews, 112, 2082–2099. DOI:  10.1021/cr200162d.CrossRefGoogle Scholar
  4. Cheng, C. J., Zha, J. W., Liu, Z. B., Shen, L., Sun, J., & Liu, Y. J. (2012). Synthesis and UV-curing properties of a photo-active cardanol derivative. Chinese Journal of Applied Chemistry, 29, 392–396. (in Chinese)Google Scholar
  5. Cheng, C. J., Fu, Q. L., Bai, X. X., Liu, S. J., Shen, L., Fan, W. Q., & Li, H. X. (2013a). Facile synthesis of gemini surface-active ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation. Chemical Papers, 67, 336–341. DOI:  10.2478/s11696-012-0271-y.CrossRefGoogle Scholar
  6. Cheng, C., Bai, X., Liu, S., Huang, Q., Tu, Y., Wu, H., & Wang, X. (2013b). UV cured polymer based on a renewable cardanol derived RAFT agent. Journal of Polymer Research, 20, article no. 197. DOI:  10.1007/s10965-013-0197-2.
  7. Cheng, C., Bai, X., Zhang, X., Chen, M., Huang, Q., Hu, Z., & Tu, Y. (2014a). Facile synthesis of block copolymers from a cinnamate derivative by combination of AGET ATRP and click chemistry. Macromolecular Research, 22, 1306–1311. DOI:  10.1007/s13233-014-2180-0.CrossRefGoogle Scholar
  8. Cheng, C. J., Bai, X. X., Fan, W. Q., Wu, H. M., Shen, L., Huang, Q. H., & Tu, Y. M. (2014b). Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing. Chemical Papers, 68, 136–144. DOI:  10.2478/s11696-013-0420-y.CrossRefGoogle Scholar
  9. Chu, D. S. H., Schellinger, J. G., Shi, J., Convertine, A. J., Stayton, P. S., & Pun, S. H. (2012). Application of living free radical polymerization for nucleic acid delivery. Accounts of Chemical Research, 45, 1089–1099. DOI:  10.1021/ar200242z.CrossRefGoogle Scholar
  10. Dadashi-Silab, S., Bildirir, H., Dawson, R., Thomas, A., & Yagci, Y. (2014). Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations. Macromolecules, 47, 4607–4614. DOI:  10.1021/ma501001m.CrossRefGoogle Scholar
  11. Edlund, U., & Albertsson, A. C. (2012). SET-LRP goes “green”: Various hemicellulose initiating systems under non-inert conditions. Journal of Polymer Science: Part A: Polymer Chemistry, 50, 2650–2658. DOI:  10.1002/pola.26041.CrossRefGoogle Scholar
  12. Edlund, U., Rodriguez-Emmenegger, C., Brynda, E., & Albertsson, A. C. (2012). Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry, 3, 2920–2927. DOI:  10.1039/c2py20421e.CrossRefGoogle Scholar
  13. Jing, R., Wang, G., Zhang, Y., & Huang, J. (2011). One-pot synthesis of PS-b-PEO-b-PtBA triblock copolymers via combination of SET-LRP and “click” chemistry using copper(0)/PMDETA as catalyst system. Macromolecules, 44, 805–810. DOI:  10.1021/ma102621k.CrossRefGoogle Scholar
  14. Konkolewicz, D., Wang, Y., Zhong, M., Krys, P., Isse, A. A., Gennaro, A., & Matyjaszewski, K. (2013). Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules, 46, 8749–8772. DOI:  10.1021/ma401243k.CrossRefGoogle Scholar
  15. Konkolewicz, D., Wang, Y., Krys, P., Zhong, M., Isse, A. A., Gennaro, A., & Matyjaszewski, K. (2014). SARA ATRP or SET-LRP. End of controversy? Polymer Chemistry, 5, 4396–4417. DOI:  10.1039/c4py00149d.CrossRefGoogle Scholar
  16. Król, P., & Chmielarz, P. (2014). Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials. Progress in Organic Coatings, 77, 913–948. DOI:  10.1016/j.porgcoat.2014.01.027.CrossRefGoogle Scholar
  17. Lee, S. K., Yoon, S. H., Chung, I., Hartwig, A., & Kim, B. K. (2011). Waterborne polyurethane nanocomposites having shape memory effects. Journal of Polymer Science: Part A: Polymer Chemistry, 49, 634–641. DOI:  10.1002/pola.24473.CrossRefGoogle Scholar
  18. Matyjaszewski, K., Shipp, D. A., Wang, J. L., Grimaud, T., & Patten, T. E. (1998). Utilizing halide exchange to improve control of atom transfer radical polymerization. Macro-molecules, 31, 6836–6840. DOI:  10.1021/ma980476r.CrossRefGoogle Scholar
  19. Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921–2990. DOI:  10.1021/cr940534g.CrossRefGoogle Scholar
  20. Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macro-molecules, 45, 4015–4039. DOI:  10.1021/ma3001719.CrossRefGoogle Scholar
  21. Matyjaszewski, K., & Tsarevsky, N. V. (2014). Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 136, 6513–6533. DOI:  10.1021/ja408069v.CrossRefGoogle Scholar
  22. Mele, G., & Vasapollo, G. (2008). Fine chemicals and new hybrid materials from cardanol. Mini-Reviews in Organic Chemistry, 5, 243–253. DOI:  10.2174/157019308785161611.CrossRefGoogle Scholar
  23. Miller, S. A. (2013). Sustainable polymers: Opportunities for the next decade. ACS Macro Letters, 2, 550–554. DOI:  10.1021/mz400207g.CrossRefGoogle Scholar
  24. Modiba, E., Osifo, P., & Rutto, H. (2014). The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil. Chemical Papers, 68, 1341–1349. DOI:  10.2478/s11696-014-0583-1.CrossRefGoogle Scholar
  25. Percec, V., Guliashvili, T., Ladislaw, J. S., Wistrand, A., Stjerndahl, A., Sienkowska, M. J., Monteiro, M. J., & Sahoo, S. (2006). Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25°C. Journal of the American Chemical Society, 128, 14156–14165. DOI:  10.1021/ja065484z.CrossRefGoogle Scholar
  26. Rosen, B. M., & Percec, V. (2009). Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chemical Reviews, 109, 5069–5119. DOI:  10.1021/cr900024j.CrossRefGoogle Scholar
  27. Saghatchi, F., Ahmadi, E., Mohamadnia, Z., Hajifatheali, H., Tabebordbar, H., & Karimi, F. (2014). Cu-based atom transfer radical polymerization of methyl methacrylate using a novel tridentate ligand with mixed donor atoms. Chemical Papers, 68, 1555–1560. DOI:  10.2478/s11696-014-0613-z.CrossRefGoogle Scholar
  28. Santeusanio, S., Attanasi, O. A., Majer, R., Cangiotti, M., Fattori, A., & Ottaviani, M. F. (2013). Effect of hydrogenated cardanol on the structure of model membranes studied by EPR and NMR. Langmuir, 29, 11118–11126. DOI:  10.1021/la402008n.CrossRefGoogle Scholar
  29. Suresh, K. I. (2013). Rigid polyurethane foams from cardanol: Synthesis, structural characterization, and evaluation of polyol and foam properties. ACS Sustainable Chemistry & Engineering, 1, 232–242. DOI:  10.1021/sc300079z.CrossRefGoogle Scholar
  30. Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 36, 455–567. DOI:  10.1016/j.progpolymsci.2010.10.002.CrossRefGoogle Scholar
  31. Temel, G., Karaca, N., & Arsu, N. (2010). Synthesis of main chain polymeric benzophenone photoinitiator via thiol-ene click chemistry and its use in free radical polymerization. Journal of Polymer Science: Part A: Polymer Chemistry, 48, 5306–5312. DOI:  10.1002/pola.24330.CrossRefGoogle Scholar
  32. Ugur, M. H., Kmc, H., Berkem, M. L., Güngör, A. (2014). Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chemical Papers, 68, 1561–1572. DOI:  10.2478/s11696-014-0611-1.CrossRefGoogle Scholar
  33. Vennestrøm, P. N. R., Osmundsen, C. M., Christensen, C. H., & Taarning, E. (2011). Beyond petrochemicals: The renewable chemicals industry. Angewandte Chemie International Edition, 50, 10502–10509. DOI:  10.1002/anie.201102117.CrossRefGoogle Scholar
  34. Voirin, C., Caillol, S., Sadavarte, N. V., Tawade, B. V., Boutevin, B., & Wadgaonkar, P. P. (2014). Functionalization of cardanol: towards biobased polymers and additives. Polymer Chemistry, 5, 3142–3162. DOI:  10.1039/c3py01194a.CrossRefGoogle Scholar
  35. Wang, W., Zhang, Z., Cheng, Z., Zhu, J., Zhou, N., & Zhu, X. (2012). Favorable hydrogen bonding in room-temperature Cu(0)-mediated controlled radical polymerization of 4-vinylpyridine. Polymer Chemistry, 3, 2731–2734. DOI:  10.1039/c2py20283b.CrossRefGoogle Scholar
  36. Wang, W., Zhao, J., Zhang, W., Zhu, J., Zhang, Z., & Zhu, X. (2013). Ligand-free SET-DTLRP of MMA at room temperature. Journal of Polymer Science, Part A: Polymer Chemistry, 51, 1872–1879. DOI:  10.1002/pola.26570.CrossRefGoogle Scholar
  37. Yang, Z., Wicks, D. A., Yuan, J., Pu, H., & Liu, Y. (2010). Newly UV-curable polyurethane coatings prepared by multifunctional thiol- and ene-terminated polyurethane aqueous dispersions: Photopolymerization properties. Polymer, 51, 1572–1577. DOI:  10.1016/j.polymer.2010.02.003.CrossRefGoogle Scholar
  38. Yao, K., & Tang, C. (2013). Controlled polymerization of next-generation renewable monomers and beyond. Macro-molecules, 46, 1689–1712. DOI:  10.1021/ma3019574.CrossRefGoogle Scholar
  39. Zhang, X. F., Wu, Y., Huang, J., Miao, X. L., Zhang, Z. B., & Zhu, X. L. (2013). Copper(0)-mediated radical polymerization of styrene at room temperature. Chinese Journal of Polymer Science, 31, 702–712. DOI:  10.1007/s10118-013-1243-6.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Chuan-Jie Cheng
    • 1
  • Xu Zhang
    • 1
  • Xiong-Xiong Bai
    • 1
  • Jin Li
    • 1
  • Xing-Xing Cao
    • 1
  • Jing-Lan Wang
    • 1
  1. 1.Jiangxi Key Laboratory of Organic ChemistryJiangxi Science & Technology Normal UniversityNanchang, JiangxiChina

Personalised recommendations