Chemical Papers

, Volume 69, Issue 12, pp 1519–1531 | Cite as

Catalysis in glycerol: a survey of recent advances

  • Silvia Tagliapietra
  • Laura Orio
  • Giovanni Palmisano
  • Andrea Penoni
  • Giancarlo Cravotto


There is currently a significant increase in the use of glycerol as a renewable solvent for catalytic reactions. Glycerol has often been the solvent of choice in both homogeneous and heterogeneous catalyses, despite its high viscosity at ambient temperature and the low solubility of highly hydrophobic reagents found in glycerol. Its biodegradability and non-toxicity have led to reports of improved reaction performance and selectivity, as well as easier product separation and effective catalyst recycling. All relevant advances in this emerging field of “green” catalysis are thoroughly reviewed below.


glycerol and derivatives “green” solvent catalysis transition-metals complexes catalyst recycling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azua, A., Mata, J. A., & Peris, E. (2011). Iridium NHC based catalysts for transfer hydrogenation processes using glycerol as solvent and hydrogen donor. Organometallics, 30, 5532–5536. DOI:  10.1021/om200796c.CrossRefGoogle Scholar
  2. Azua, A., Mata, J. A., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2012). Alternative energy input for transfer hydrogenation using iridium NHC based catalysts in glycerol as hydrogen donor and solvent. Organometallics, 31, 3911–3919. DOI:  10.1021/om300109e.CrossRefGoogle Scholar
  3. Azua, A., Mata, J. A., Heymes, P., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2013). Palladium N-heterocyclic carbene catalysts for the ultrasound-promoted Suzuki-Miyaura reaction in glycerol. Advanced Synthesis & Catalysis, 355, 1107–1116. DOI:  10.1002/adsc.201201047.CrossRefGoogle Scholar
  4. Benoit, M., Brissonnet, Y., Guélou, E., De Oliveira Vigier, K., Barrault, J., & François, J. (2010). Acid-catalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent. ChemSusChem, 3, 1304–1309. DOI:  10.1002/cssc.201000162.CrossRefGoogle Scholar
  5. Carmona, R. C., Schevciw, E. P., Petrarca de Albuquerque, J. L., Wendler, E. P., & Dos Santos, A. A. (2013). Joint use of microwave and glycerol-zinc(II) acetate catalytic system in the synthesis of 2-pyridyl-2-oxazolines. Green Process and Synthesis, 2, 35–42. DOI:  10.1515/gps-2012-0085.Google Scholar
  6. Chahdoura, F., Pradel, C., & Gómez, M. (2013a). Palladium nanoparticles in glycerol: A versatile catalytic system for C—X bond formation and hydrogenation processes. Advanced Synthesis & Catalysis, 355, 3648–3660. DOI:  10.1002/adsc.201300753.CrossRefGoogle Scholar
  7. Chahdoura, F., Dubrulle, L., Fourmy, K., Durand, J., Madec, D., & Gómez, M. (2013b). Glycerol — a non-innocent solvent for Rh-catalysed Pauson-Khand carbocyclisations. European Journal of Inorganic Chemistry, 2013, 5138–5144. DOI:  10.1002/ejic.201300651.CrossRefGoogle Scholar
  8. Chahdoura, F., Favier, I., & Gómez, M. (2014a). Glycerol as suitable solvent for the synthesis of metallic species and catalysis. Chemistry — A European Journal, 20, 10884–10893. DOI:  10.1002/chem.201403534.CrossRefGoogle Scholar
  9. Chahdoura, F., Pradel, C., & Gómez, M. (2014b). Copper(I) oxide nanoparticles in glycerol: A convenient catalyst for cross-coupling and azide-alkyne cycloaddition processes. ChemCatChem, 6, 2929–2936. DOI:  10.1002/cctc.201402214.CrossRefGoogle Scholar
  10. Chahdoura, F., Mallet-Ladeira, S., & Gómez, M. (2015). Palladium nanoparticles in glycerol: A clear-cut catalyst for one-pot multi-step processes applied in the synthesis of hetero-cyclic compounds. Organic Chemistry Frontiers, 2, 312–318. DOI:  10.1039/c4qo00338a.CrossRefGoogle Scholar
  11. Cintas, P., Tagliapietra, S., Calcio Gaudino, E., Palmisano, G., & Cravotto, G. (2014). Glycerol: A solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry, 16, 1056–1065. DOI:  10.1039/c3gc41955j.CrossRefGoogle Scholar
  12. Cravotto, G., Orio, L., Calcio Gaudino, E., Martina, K., Tavor, D., & Wolfson, A. (2011). Efficient synthetic protocols in glycerol under heterogeneous catalysis. ChemSusChem, 4, 1130–1134. DOI:  10.1002/cssc.201100106.CrossRefGoogle Scholar
  13. Delample, M., Villandier, N., Douliez, J. P., Camy, S., Condoret, J. S., Pouilloux, Y., Barrault, J., & Jérôme, F. (2010). Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β, β-diarylation of acrylates over palladium nanoparticles. Green Chemistry, 12, 804–808. DOI:  10.1039/b925021b.CrossRefGoogle Scholar
  14. Díaz-Álvarez, A. E., Crochet, P., & Cadierno, V. (2011). Ruthenium-catalyzed reduction of allylic alcohols using glycerol as solvent and hydrogen donor. Catalysis Communications, 13, 91–96. DOI:  10.1016/j.catcom.2011.07.006.CrossRefGoogle Scholar
  15. Díaz-Álvarez, A. E., & Cadierno, V. (2013). Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Applied Sciences, 3, 55–69. DOI:  10.3390/app3010055.CrossRefGoogle Scholar
  16. Díaz-Álvarez, A. E., Francos, J., Croche, P., & Cadierno, V. (2014). Recent advances in the use ofglycerol as green solvent for synthetic organic chemistry. Current Green Chemistry, 1, 51–65. DOI:  10.2174/221334610101131218094907.CrossRefGoogle Scholar
  17. Francos, J., & Cadierno, V. (2010). Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: Glycerol vs. water. Green Chemistry, 12, 1552–1555. DOI:  10.1039/c0gc00169d.CrossRefGoogle Scholar
  18. García-Marín, H., van der Toorn, J. C., Mayoral, J. A., García, J. I., & Arends, I. W. C. E. (2009). Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chemistry, 11, 1605–1609. DOI:  10.1039/b913052g.CrossRefGoogle Scholar
  19. García-Marín, H., van der Toorn, J. C., Mayoral, J. A., García, J. I., & Arends, I. W. C. E. (2011). Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents. Journal of Molecular Catalysis A, 334, 83–88. DOI:  10.1016/j.molcata.2010.10.027.CrossRefGoogle Scholar
  20. Gawande, M. B., Rathi, A. K., Branco, P. S., Nogueira, I. D., Velhinho, A., Shrikhande, J. J., Indulkar, U. U., Jayaram, R. V., Ghumman, C. A. A., Bundaleski, N., & Teodoro, O. M. N. D. (2012). Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferritenickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chemistry — A European Journal, 18, 12628–12632. DOI:  10.1002/chem.201202380.CrossRefGoogle Scholar
  21. Gonçalves, L. C., Fiss, G. F., Perin, G., Alves, D., Jacob, R. G., & Lenardão, E. J. (2010). Glycerol as a promoting medium for cross-coupling reactions of diaryl diselenides with vinyl bromides. Tetrahedron Letters, 51, 6772–6775. DOI:  10.1016/j.tetlet.2010.10.107.CrossRefGoogle Scholar
  22. Guyon, C., Métay, E., Duguet, N., & Lemaire, M. (2013). Biphasic glycerol/2-MeTHF, ruthenium-catalysed enantioselective transfer hydrogenation of ketones using sodium hypophosphite as hydrogen donor. European Journal of Organic Chemistry, 2013, 5439–5444. DOI:  10.1002/ejoc.201300506.CrossRefGoogle Scholar
  23. Handy, S., & Lavender, K. (2013). Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Letters, 54, 4377–4379. DOI:  10.1016/j.tetlet.2013.05.122.CrossRefGoogle Scholar
  24. Karam, A., Villandier, N., Delample, M., Klein Koerkamp, C., Douliez, J. P., Granet, R., Krausz, P., Barrault, J., & Jérôme, F. (2008). Rational design of sugar-based-surfactant combined catalysts for promoting glycerol as a solvent. Chemistry — A European Journal, 14, 10196–10200. DOI:  10.1002/chem.200801495.CrossRefGoogle Scholar
  25. Pagliaro, M., & Rossi, M. (2008). The future of glycerol: New usages for a versatile raw material. Cambridge, UK: RSC Publishoing. DOI:  10.1039/9781847558305.Google Scholar
  26. Perin, G., Mesquita, K., Calheiro, T. P., Silva, M. S., Lenardăo, E. J., Alves, D., & Jacob, R. G. (2014). Synthesis of β-aryl-β-sulfanyl ketones by a sequential one-pot reaction using KF/Al2O3 in glycerol. Synthetic Communications, 44, 49–58. DOI:  10.1080/00397911.2013.788720.CrossRefGoogle Scholar
  27. Quan, Z. J., Ren, R. G., Da, Y. X., Zhang, Z., & Wang, X. C. (2011). Glycerol as an alternative green reaction medium for multicomponent reactions using Ps-PEG-OSO3H as catalyst. Synthetic Communications, 41, 3106–3116. DOI:  10.1080/00397911.2010.517373.CrossRefGoogle Scholar
  28. Ricordi, V. G., Freitas, C. S., Perin, G., Lenardăo, E. J., Jacob, R. G., Savegnago, L., & Alves, D. (2012). Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chemistry, 14, 1030–1034. DOI:  10.1039/c2gc16427b.CrossRefGoogle Scholar
  29. Sequeiros, A., Serrano, L., Briones, R., & Labidi, J. (2013). Lignin liquefaction under microwave heating. Journal of Applied Polymer Science, 130, 3292–3298. DOI:  10.1002/app.39577.CrossRefGoogle Scholar
  30. Sharma, N., Sharma, A., Shard, A., Kumar, R., Saima, & Sinha, A. K. (2011). Pd-catalyzed orthogonal Knoevenagel/Perkin condensation-decarboxylation-Heck/Suzuki sequences: Tandem transformations of benzaldehydes into hydroxy-functionalized antidiabetic stilbene-cinnamoyl hybrids and asymmetric distyrylbenzenes. Chemistry — A European Journal, 17, 10350–10356. DOI:  10.1002/chem.201101174.CrossRefGoogle Scholar
  31. Soares, B., Gama, N., Freire, C., Barros-Timmons, A., Brandão, I., Silva, R., Pascoal Neto, C., & Ferreira, A. (2014). Ecopolyol production from industrial cork powder via acid liquefaction using polyhydric alcohols. ACS Sustainable Chemistry & Engineering, 2, 846–854. DOI:  10.1021/sc400488c.CrossRefGoogle Scholar
  32. Sutter, M., Pehlivan, L., Lafon, R., Dayoub, W., Raoul, Y., Métay, E., & Lemaire, M. (2013). 1,2,3-Trimethoxypropane, a glycerol-based solvent with low toxicity: New utilization for the reduction of nitrile, nitro, ester and acid functional groups with TMDS and a metal catalyst. Green Chemistry, 15, 3020–3026. DOI:  10.1039/c3gc41082j.CrossRefGoogle Scholar
  33. Tavor, D., Popov, S., Dlugy, C., & Wolfson, A. (2010). Catalytic transfer-hydrogenations of olefins in glycerol. Organic Communications, 3, 70–75.Google Scholar
  34. Tavor, D., Gefen, I., Dlugy, C., & Wolfson, A. (2011). Transfer hydrogenations of nitrobenzene using glycerol as solvent and hydrogen donor. Synthetic Communications, 41, 3409–3416. DOI:  10.1080/00397911.2010.518276.CrossRefGoogle Scholar
  35. Wolfson, A., & Dlugy, C. (2007). Palladium-catalyzed Heck and Suzuki coupling in glycerol. Chemical Papers, 61, 228–232. DOI:  10.2478/s11696-007-0026-3.CrossRefGoogle Scholar
  36. Wolfson, A., Dlugy, C., Shotland, Y., & Tavor, D. (2009). Glycerol as solvent and hydrogen donor in transfer hydrogenation-dehydrogenation reactions. Tetrahedron Letters, 50, 5951–5953. DOI:  10.1016/j.tetlet.2009.08.035.CrossRefGoogle Scholar
  37. Wolfson, A., Snezhko, A., Meyouhas, T., & Tavor, D. (2012). Glycerol derivatives as green reaction mediums. Green Chemistry Letters and Reviews, 5, 7–12. DOI:  10.1080/17518253.2011.572298.CrossRefGoogle Scholar
  38. Wolfson, A., Dlugy, C., & Tavor, D. (2013). Baker’s yeast catalyzed asymmetric reduction of prochiral ketones in different reaction medium. Organic Communications, 6, 1–11.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Silvia Tagliapietra
    • 1
  • Laura Orio
    • 1
  • Giovanni Palmisano
    • 2
  • Andrea Penoni
    • 2
  • Giancarlo Cravotto
    • 1
  1. 1.Dipartimento di Scienza e Tecnologia del Farmaco and NIS - Centre for Nanostructured Interfaces and SurfacesUniversity of TurinTurinItaly
  2. 2.Dipartimento di Scienza e Alta TecnologiaUniversity of InsubriaComoItaly

Personalised recommendations