Chemical Papers

, Volume 69, Issue 11, pp 1445–1453 | Cite as

Extraction products from Miscanthus var. ‘Soranovskii’

  • Sergey G. Il’yasov
  • Viktor A. Cherkashin
  • Gennady V. Sakovich
  • Dmitri A. Parkhomenko
Original Paper


The chemical structures of Miscanthus var. ‘Soranovskii’ lignin fractions released via extraction of lignin from the lignocellulosic feedstock using moderately heated acetone under atmospheric pressure, without acidic and alkaline catalysts, were studied. A blend of Miscanthus stems and leaves was pretreated with water under thermobaric conditions. The acetone organosolv process subsequently afforded a substance related to a lignin-like matter-acetone organosolv Miscanthus lignin (AOML). Non-destructive analytical techniques such as FTIR spectroscopy, gas chromatography-mass spectrometry, size-exclusion chromatography, and 2D NMR were used. The IR and NMR spectroscopies revealed the AOML structure to comprise all the three major types of phenylpropane units: guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H). The resultant acetone-organosolv lignin exhibits good solubility in polar solvents, moderate solubility in aromatic chemicals, and is insoluble in non-polar solvents, exhibiting the physicochemical properties of a thermoplastic polymer with a softening point of 67.0°C (onset 33.0°C, endset 81.5°C).


Miscanthus var. ‘Soranovskii’ hydrothermal treatment depolymerisation lignin acetone organosolv lignin thermoplasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, S., Sorek, H., Mitchell, V. D., Ibáñez, A. B., & Wemmer, D. E. (2012). Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. Journal of Agricultural Food and Chemistry, 60 8203–8212. DOI:  10.1021/jf302409d.CrossRefGoogle Scholar
  2. Budaeva, V. V., Makarova, E. I., Skiba, E. A., & Sakovich, G. V. (2013). Enzymatic hydrolysis of the products of hydrothermobaric processing of Miscanthus and oat hulls. Catalysis in Industry, 5 335–341. DOI:  10.1134/s207005041304003x.CrossRefGoogle Scholar
  3. Denisova, M. N., Budaeva, V. V., & Pavlov, I. N. (2015). Pulps isolated from Miscanthus, oat hulls, and intermediate flax straw with sodium benzoate. Korean Journal of Chemical Engineering, 32 202–205. DOI:  10.1007/s11814-014-0371-1.CrossRefGoogle Scholar
  4. Il’yasov, S. G., Cherkashin, V. A., & Sakovich, G. V. (2013). Depolimerizatsiya lignina gidrotermalnym metodom (Depolymerization of lignin by hydrothermal method). Chimija rastitel’nogo syr’ja (Chemistry of Plant Raw Material), 4 21–27. DOI:  10.14258/jcprm.1304021. (in Russian)Google Scholar
  5. Jones, M. B., & Walsh, M. (2001). Miscanthus: For energy and fibre. London, UK: James & James.Google Scholar
  6. Mitrofanov, R. Yu., Budaeva, V. V., Denisova, M. N., & Sakovich, G. V. (2011). Gidrotropnyi metod polucheniya tsellyulozy iz Miscanthus (Hydrotropic method of producing pulp from Miscanthus). Chimija rastitel’nogo syr’ja (Chemistry of Plant Raw Material), 1, 25–32. (in Russian)Google Scholar
  7. Obolenskaya, A. V., Yelnitskaya, Z. P., & Leonovich, A. A. (1991). Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory works on wood and cellulose chemistry: Textbook for higher educational institutions). Moscow, Russia: Ecology Publisher. (in Russian)Google Scholar
  8. Sannigrahi, P., Ragauskas, A. J., & Miller, S. J. (2010). Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy & Fuels, 24 683–689. DOI:  10.1021/ef900845t.CrossRefGoogle Scholar
  9. Shumny, V. K., Veprev, S. G., Nechiporenko, N. N., Goryachkovskaya, T. N., Slynko, N. M., Kolchanov, N. A., & Peltek, S. E. (2010). A new form of Miscanthus (Chinese silver grass, Miscanthus sinensis—Andersson) as a promising source of cellulosic biomass. Advances in Bioscience and Biotechnology, 1 167–170. DOI:  10.4236/abb.2010.13023.CrossRefGoogle Scholar
  10. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329 790–792. DOI:  10.1126/science.1189268.CrossRefGoogle Scholar
  11. State Register of Selection Achievements Authorized for Use (2012). Miscanthus No. 8854628. State Commission of the Russian Federation for Selection Achievements Test and Protection, Moscow, Russia.Google Scholar
  12. Villaverde, J. J., Li, J. B., Ek, M., Ligero, P., & de Vega, A. (2009). Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. Journal of Agricultural Food and Chemistry, 57 6262–6270. DOI:  10.1021/jf900483t.CrossRefGoogle Scholar
  13. Wacek, A., & Hlava, J. (1951). Vergleichende Untersuchungen an den mit Wasser fällbaren Anteilen von Organosolvligninen der europäischen Fichte. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 82 1046–1058. DOI:  10.1007/bf00899383.CrossRefGoogle Scholar
  14. Wang, K., Bauer, S., & Sun, R. C. (2012). Structural transformation of Miscanthus x giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. Journal of Agricultural Food and Chemistry, 60 144–152. DOI:  10.1021/jf2037399.CrossRefGoogle Scholar
  15. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience, Biotechnology, and Biochemistry, 72 805–810. DOI:  10.1271/bbb.70689.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Sergey G. Il’yasov
    • 1
  • Viktor A. Cherkashin
    • 1
  • Gennady V. Sakovich
    • 1
  • Dmitri A. Parkhomenko
    • 2
  1. 1.Institute for Problems of Chemical and Energetic TechnologiesSiberian Branch of the Russian Academy of Sciences (IPCET SB RAS), BiyskAltai KraiRussia
  2. 2.International Tomography CentreSiberian Branch of the Russian Academy of Sciences (ITC SB RAS)NovosibirskRussia

Personalised recommendations