Skip to main content
Log in

Multi-component synthesis of highly substituted imidazoles catalyzed by nanorod vanadatesulfuric acid

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanorod vanadatesulfuric acid (VSA NRs), as a recyclable and eco-benign catalyst, was used for one-pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles using aldehydes, benzil, benzoin or 9,10-phenanthrenequinone and ammonium acetate or aniline under solvent-free conditions providing high to excellent yields. VSA is easily prepared by a simple reaction of chlorosulfonic acid and sodium metavanadate in high purity. As compared with the conventional procedures, the present protocol offers several advantages such as simplicity of procedure, short reaction time, high yields, easy workup, recoverability and reusability of the catalyst and simple purification of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, S. L., Hazen, R. J., Batson, A. G., & Phillips, A. P. (1989). Trifenagrel: A chemically novel platelet aggregation inhibitor. Journal of Pharmacology and Experimental Therapeutics, 249 359–365.

    CAS  Google Scholar 

  • Antolini, M., Bozzoli, A., Ghiron, C., Kennedy, G., Rossi, T., & Ursini, A. (1999). Analogues of 4,5-bis(3,5-dichlorophenyl)-2-trifluoromethyl-1H-imidazole as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 9 1023–1028. DOI: 10.1016/s0960-894x(99)00112-2.

    Article  CAS  Google Scholar 

  • Balalaie, S., Hashemi, M. M., & Akhbari, M. (2003). A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Letters, 44 1709–1711. DOI: 10.1016/s0040-4039(03)00018-2.

    Article  CAS  Google Scholar 

  • Bourissou, D., Guerret, O., Gabbaï, F. P., & Bertrand, G. (2000). Stable carbenes. Chemical Reviews, 100 39–92. DOI: 10.1021/cr940472u.

    Article  CAS  Google Scholar 

  • Chang, L. L., Sidler, K. L., Cascieri, M. A., de Laszlo, S., Koch, G., Li, B., MacCoss, M., Mantlo, N., O’Keefe, S., Pang, M., Rolando, A., & Hagmann, W. K. (2001). Substituted imidazoles as glucagon receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 11 2549–2553. DOI: 10.1016/s0960-894x(01)00498-x.

    Article  CAS  Google Scholar 

  • Clark, J. H. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35 791–797. DOI: 10.1021/ar010072a.

    Article  CAS  Google Scholar 

  • Damavandi, S. (2011). Schiff base transition metal complex catalyzed one-pot synthesis of 2-aryl-1H-phenanthro[9,10-d]imidazoles. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 41 1274–1277. DOI: 10.1080/15533174.2011.594839.

    Article  CAS  Google Scholar 

  • Davidson, D., Weiss, M., & Jelling, M. (1937). The action of ammonia on benzil. The Journal of Organic Chemistry, 2 319–327. DOI: 10.1021/jo01227a004.

    Article  CAS  Google Scholar 

  • Davoodnia, A., Khojastehnezhad, A., Bakavoli, M., & Tavakoli-Hoseini, N. (2011). SO3H-functionalized ionic liquids: Green, efficient and reusable catalysts for the facile dehydration of aldoximes into nitriles. Chinese Journal of Chemistry, 29 978–982. DOI: 10.1002/cjoc.201190199.

    Article  CAS  Google Scholar 

  • Eseola, A. O., Li, W., Sun, W. H., Zhang, M., Xiao, L. W., & Woods, J. A. O. (2011). Luminescent properties of some imidazole and oxazole based heterocycles: Synthesis, structure and substituent effects. Dyes and Pigments, 88 262–273. DOI: 10.1016/j.dyepig.2010.07.005.

    Article  CAS  Google Scholar 

  • Frantz, D. E., Morency, L., Soheili, A., Murry, J. A., Grabowski, E. J. J., & Tillyer, R. D. (2004). Synthesis of substituted imidazoles via organocatalysis. Organic Letters, 6 843–846. DOI: 10.1021/ol0498803.

    Article  CAS  Google Scholar 

  • Heravi, M. M., Derikvand, F., & Bamoharram, F. F. (2007). Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. Journal of Molecular Catalysis A, 263 112–114. DOI: 10.1016/j.molcata.2006.08.048.

    Article  CAS  Google Scholar 

  • Karimi, A. R., Alimohammadi, Z., Azizian, J., Mohammadi, A. A., & Mohammadizadeh, M. R. (2006). Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catalysis Communications, 7 728–732. DOI: 10.1016/j.catcom.2006.04.004.

    Article  CAS  Google Scholar 

  • Karimi, A. R., Alimohammadi, Z., & Amini, M. M. (2010). Wells-Dawson heteropolyacid supported on silica: A highly efficient catalyst for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Molecular Diversity, 14 635–641. DOI: 10.1007/s11030-009-9197-x.

    Article  CAS  Google Scholar 

  • Kidwai, M., Mothsra, P., Bansal, V., & Goyal, R. (2006). Efficient elemental iodine catalyzed one-pot synthesis of 2,4,5-triarylimidazoles. Monatshefte für Chemie — Chemical Monthly, 137 1189–1194. DOI: 10.1007/s00706-006-0518-9.

    Article  CAS  Google Scholar 

  • Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S., & Singh, T. P. (2007). One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. Journal of Molecular Catalysis A, 265 177–182. DOI: 10.1016/j.molcata.2006.10.009.

    Article  CAS  Google Scholar 

  • Kokare, N. D., Sangshetti, J. N., & Shinde, D. B. (2007). One-pot efficient synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles and 2,4,5-triaryl-1H-imidazoles using oxalic acid catalyst. Synthesis, 2007 2829–2834. DOI: 10.1055/s-2007-983872.

    Article  Google Scholar 

  • Lantos, I., Zhang, W. Y., Shui, X. Q., & Eggleston, D. S. (1993). Synthesis of imidazoles via hetero-Cope rearrangements. The Journal of Organic Chemistry, 58 7092–7095. DOI: 10.1021/jo00077a033.

    Article  CAS  Google Scholar 

  • Liu, J. P., Chen, J. B., Zhao, J. F., Zhao, Y. H., Li, L., & Zhang, H. B. (2003). A modified procedure for the synthesis of 1-arylimidazoles. Synthesis, 2003 2661–2666. DOI: 10.1055/s-2003-42444.

    Google Scholar 

  • Lombardino, J. G., & Wiseman, E. H. (1974). Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. Journal of Medicinal Chemistry, 17 1182–1188. DOI: 10.1021/jm00257a011.

    Article  CAS  Google Scholar 

  • Nagarapu, L., Apuri, S., & Kantevari, S. (2007). Potassium dodecatugstocobaltate trihydrate (K5CoW12O40 · 3H2O): A mild and efficient reusable catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. Journal of Molecular Catalysis A, 266 104–108. DOI: 10.1016/j.molcata.2006.10.056.

    Article  CAS  Google Scholar 

  • Nasr-Esfahani, M., & Abdizadeh, T. (2013a). Nanorod vanadatesulfuric acid as a novel, recyclable and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzopyrans. Journal of Nanoscience and Nanotechnology, 13 5004–5011. DOI: 10.1166/jnn.2013.7592.

    Article  CAS  Google Scholar 

  • Nasr-Esfahani, M., & Abdizadeh, T. (2013b). Preparation, characterization and use of vanadatesulfuric acid as a new and eco-benign nanocatalyst for the synthesis of 14-aryl-14H-dibenzo[a,j] xanthenes under solvent-free conditions. Revue Roumaine de Chimie, 58 27–35.

    CAS  Google Scholar 

  • Nasr-Esfahani, M., Hoseini, S. J., Montazerozohori, M., Mehrabi, R., & Nasrabadi, H. (2014). Magnetic Fe3O4 nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. Journal of Molecular Catalysis A, 382 99–105. DOI: 10.1016/j.molcata.2013.11.010.

    Article  CAS  Google Scholar 

  • Norwood, D., Branch, E., Smith, B., & Honeywell, M. (2002). Olmesartan medoxomil for hypertension: A clinical review. Drug Forecast, 27 611–618.

    Google Scholar 

  • Oskooie, H. A., Alimohammadi, Z., & Heravi, M. M. (2006). Microwave-assisted solid-phase synthesis of 2,4,5-triaryl imidazoles in solventless system: An improved protocol. Heteroatom Chemistry, 17 699–702. DOI: 10.1002/hc.20237.

    Article  CAS  Google Scholar 

  • Radziszewski, B. (1882). Ueber die Constitution des Lophins und verwandter Verbindungen. Berichte der Deutschen Chemischen Gesellschaft, 15 1493–1496. DOI: 10.1002/cber.18820150207. (in German)

    Article  Google Scholar 

  • Sadeghi, B., Mirjalili, B. B. F., & Hashemi, M. M. (2008). BF3 · SiO2: An efficient reagent system for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron Letters, 49 2575–2577. DOI: 10.1016/j.tetlet.2008.02.100.

    Article  CAS  Google Scholar 

  • Saffari Jourshari, M., Mamaghani, M., Shirini, F., Tabatabaeian, K., Rassa, M., & Langari, H. (2013). An expedient one-pot synthesis of highly substituted imidazoles using supported ionic liquid-like phase (SILLP) as a green and efficient catalyst and evaluation of their anti-microbial activity. Chinese Chemical Letters, 24 993–996. DOI: 10.1016/j.cclet.2013.06.005.

    Article  CAS  Google Scholar 

  • Samai, S., Nandi, G. C., Singh, P., & Singh, M. S. (2009). l-Proline: An efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron, 65 10155–10161. DOI: 10.1016/j.tet.2009.10.019.

    Article  CAS  Google Scholar 

  • Sangshetti, J. N., Kokare, N. D., Kotharkara, S. A., & Shinde, D. B. (2008). Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1H-imidazoles. Journal of Chemical Sciences, 120 463–467. DOI: 10.1007/s12039-008-0072-6.

    Article  CAS  Google Scholar 

  • Shaabani, A., & Rahmati, A. (2006). Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. Journal of Molecular Catalysis A, 249 246–248. DOI: 10.1016/j.molcata.2006.01.006.

    Article  CAS  Google Scholar 

  • Siddiqui, S. A., Narkhede, U. C., Palimkar, S. S., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2005). Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron, 61 3539–3546. DOI: 10.1016/j.tet.2005.01.116.

    Article  CAS  Google Scholar 

  • Sivakumar, K., Kathirvel, A., & Lalitha, A. (2010). Simple and efficient method for the synthesis of highly substituted imidazoles using zeolite-supported reagents. Tetrahedron Letters, 51 3018–3021. DOI: 10.1016/j.tetlet.2010.04.013.

    Article  CAS  Google Scholar 

  • Stähelin, M., Burland, D. M., Ebert, M., Miller, R. D., Smith, B. A., Twieg, R. J., Volksen, W., & Walsh, C. A. (1992). Re-evaluation of the thermal stability of optically nonlinear polymeric guest-host systems. Applied Physics Letters, 61 1626–1628. DOI: 10.1063/1.108497.

    Article  Google Scholar 

  • Sun, Y. F., Huang, W., Lu, C. G., & Cui, Y. P. (2009). The synthesis, two-photon absorption and blue upconversion fluorescence of novel, nitrogen-containing heterocyclic chromophores. Dyes and Pigments, 81 10–17. DOI: 10.1016/j.dyepig.2008.08.003.

    Article  CAS  Google Scholar 

  • Synećek, V., & Hanic, F. (1954). The crystal structure of ammonium metavanadate. Czechoslovak Journal of Physics, 4 120–129. DOI: 10.1007/bf01687750.

    Article  Google Scholar 

  • Takle, A. K., Brown, M. J. B., Davies, S., Dean, D. K., Francis, G., Gaiba, A., Hird, A. W., King, F. D., Lovell, P. J., Naylor, A., Reith, A. D., Steadman, J. G., & Wilson, D. M. (2006). The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorganic & Medicinal Chemistry Letters, 16 378–381. DOI: 10.1016/j.bmcl.2005.09.072.

    Article  CAS  Google Scholar 

  • Teimouri, A., & Chermahini, A. N. (2011). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nanocatalyst. Journal of Molecular Catalysis A, 346 39–45. DOI: 10.1016/j.molcata.2011.06.007.

    Article  CAS  Google Scholar 

  • Uçucu, Ü., Karaburun, N. G., & Işikdağ, İ (2001). Synthesis and analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives. Il Farmaco, 56 285–290. DOI: 10.1016/s0014-827x(01)01076-x.

    Article  Google Scholar 

  • Wang, L., Woods, K. W., Li, Q., Barr, K. J., McCroskey, R. W., Hannick, S. M., Gherke, L., Credo, R. B., Hui, Y. H., Marsh, K., Warner, R., Lee, J. Y., Zielinsky-Mozng, N., Frost, D., Rosenberg, S. H., & Sham, H. L. (2002). Potent, orally active heterocycle-based combretastatin A-4 analogues: Synthesis, structure-activity relationship, pharmacokinetics and in vivo antitumor activity evaluation. Journal of Medicinal Chemistry, 45 1697–1711. DOI: 10.1021/jm010523x.

    Article  CAS  Google Scholar 

  • Wang, J., Mason, R., VanDerveer, D., Feng, K., & Bu, X. R. (2003). Convenient preparation of a novel class of imidazo[1,5-a]pyridines: Decisive role by ammonium acetate in chemoselectivity. The Journal of Organic Chemistry, 68 5415–5418. DOI: 10.1021/jo0342020.

    Article  CAS  Google Scholar 

  • Wang, L. M., Wang, Y. H., Tian, H., Yao, Y. F., Shao, J. H., & Liu, B. (2006). Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate. Journal of Fluorine Chemistry, 127 1570–1573. DOI: 10.1016/j.jfluchem.2006.08.005.

    Article  CAS  Google Scholar 

  • Wang, X. C., Gong, H. P., Quan, Z. J., Li, L., & Ye, H. L. (2009). PEG-400 as an efficient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5-tetraaryl-1H-imidazoles. Chinese Chemical Letters, 20 44–47. DOI: 10.1016/j.cclet.2008.10.005.

    Article  Google Scholar 

  • Weinmann, H., Harre, M., Koeing, K., Merten, E., & Tilestam, U. (2002). Efficient and environmentally friendly synthesis of 2-amino-imidazole. Tetrahedron Letters, 43 593–595. DOI: 10.1016/s0040-4039(01)02226-2.

    Article  CAS  Google Scholar 

  • Wolkenberg, S. E., Wisnoski, D. D., Leister, W. H., Wang, Y., Zhao, Z. J., & Lindsley, C. W. (2004). Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irrediation. Organic Letters, 6 1453–1456. DOI: 10.1021/ol049682b.

    Article  CAS  Google Scholar 

  • Yan, Y. N., Lin, D. Y., Pan, W. L., Li, X. L., Wan, Y. Q., Mai, Y. L., & Song, H. C. (2009). Synthesis and optical behaviors of 2-(9-phenanthrenyl)-, 2-(9-anthryl)- and 2-(1-pyrenyl)-1-alkylimidazole homologues. Spectrochimica Acta Part A, 74 233–242. DOI: 10.1016/j.saa.2009.06.020.

    Article  Google Scholar 

  • Yan, Y. N., Pan, W. L., & Song, H. C. (2010). The synthesis and optical properties of novel 1,3,4-oxadiazole derivatives containing an imidazole unit. Dyes and Pigments, 86 249–258. DOI: 10.1016/j.dyepig.2010.01.011.

    Article  CAS  Google Scholar 

  • Zang, H. J., Su, Q. H., Mo, Y. M., Cheng, B. W., & Jun, S. (2010). Ionic liquid [EMIM]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrasonics Sonochemistry, 17 749–751. DOI: 10.1016/j.ultsonch.2010.01.015.

    Article  CAS  Google Scholar 

  • Zhao, N., Wang, Y. L., & Wang, J. Y. (2005). A rapid and convenient synthesis of derivatives of imidazoles under microwave irradiation. Journal of the Chinese Chemical Society, 52 535–538. DOI: 10.1002/jccs.200500078.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Nasr-Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr-Esfahani, M., Montazerozohori, M. & Abdizadeh, T. Multi-component synthesis of highly substituted imidazoles catalyzed by nanorod vanadatesulfuric acid. Chem. Pap. 69, 1491–1499 (2015). https://doi.org/10.1515/chempap-2015-0156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0156

Keywords

Navigation