Skip to main content
Log in

Driving force and activation energy in air-gap membrane distillation process

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present study investigated the impact of the driving force (Δp) on the transport properties. All the experiments and calculations were performed for air-gap membrane distillation (AGMD). In the course of the experiments, it was found that an identical value of Δp could be attained by applying different values of feed and permeate temperatures. It was highlighted that constant values of water fluxes could be achieved using the constant driving force created by different temperatures. Moreover, the relation between \({J_{{{\rm{H}}_2}{\rm{O}}}}\) and 1/Tf was shown to be linear only for the \({J_{{{\rm{H}}_2}{\rm{O}}}}\) created at ΔT = TfTp > 35 K. This work’s significant finding was to highlight the limitation of the Arrhenius-type equation applied in the activation energy calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alkhudhiri, A., Darwish, N., & Hilal, N. (2013). Produced water treatment: Application of Air gap membrane distillation. Desalination, 309 46–51. DOI: 10.1016/j.desal.2012.09.017.

    Article  CAS  Google Scholar 

  • Arrhenius, S. A. (1889). Über die Dissociationswärme und den Einflusβ der Temperatur auf den Dissociationsgrad der Elektrolyte. Leipzig, Germany: Wilhelm Engelman. (in German)

    Google Scholar 

  • Baranowski, B. (1991). Non-equilibrium thermodynamics as applied to membrane transport. Journal of Membrane Science, 57 119–159. DOI: 10.1016/s0376-7388(00)80675-4.

    Article  CAS  Google Scholar 

  • El-Bourawi, M. S., Ding, Z., Ma, R., & Khayet, M. (2006). A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 285 4–29. DOI: 10.1016/j.memsci.2006.08.002.

    Article  CAS  Google Scholar 

  • Francis, L., Ghaffour, N., Alsaadi, A. A., & Amy, G. L. (2013). Material gap membrane distillation: A new design for water vapor flux enhancement. Journal of Membrane Science, 448 240–247. DOI: 10.1016/j.memsci.2013.08.013.

    Article  CAS  Google Scholar 

  • Godino, M. P., Barragán, V. M., Izquierdo, M. A., Villaluenga, J. P. G., Seoane, B., & Ruiz-Bauzá, C. (2009). Study of the activation energy for transport of water and methanol through a Nafion membrane. Chemical Engineering Journal, 152 20–25. DOI: 10.1016/j.cej.2009.03.022.

    Article  CAS  Google Scholar 

  • Gryta, M. (2005). Osmotic MD and other membrane distillation variants. Journal of Membrane Science, 246 145–156. DOI: 10.1016/j.memsci.2004.07.029.

    Article  CAS  Google Scholar 

  • Imdakm, A. O., & Matsuura, T. (2005). Simulation of heat and mass transfer in direct contact membrane distillation (MD): The effect of membrane physical properties. Journal of Membrane Science, 262 117–128. DOI: 10.1016/j.memsci.2005.05.026.

    Article  CAS  Google Scholar 

  • Jönsson, A. S., Wimmerstedt, R., & Harrysson, A. C. (1985). Membrane distillation — a theoretical study of evaporation through microporous membranes. Desalination, 56 237–249. DOI: 10.1016/0011-9164(85)85028-1.

    Article  Google Scholar 

  • Kast, W., & Hohenthanner, C. R. (2000). Mass transfer within the gas-phase of porous media. International Journal of Heat and Mass Transfer, 43 807–823. DOI: 10.1016/s0017-9310(99)00158-1.

    Article  CAS  Google Scholar 

  • Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and Interface Science, 164 56–88. DOI: 10.1016/j.cis.2010.09.005.

    Article  CAS  Google Scholar 

  • Khayet, M., & Matsuura, T. (2011). Membrane distillation: Principles and applications. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Kimura, S., Nakao, S. I., & Shimatani, S. I. (1987). Transport phenomena in membrane distillation. Journal of Membrane Science, 33 285–298. DOI: 10.1016/s0376-7388(00)80286-0.

    Article  CAS  Google Scholar 

  • Kujawa, J., Kujawski, W., Koter, S., Jarzynka, K., Rozicka, A., Bajda, K., Cerneaux, S., Persin, M., & Larbot, A. (2013). Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes. Desalination and Water Treatment, 51 1352–1361. DOI: 10.1080/19443994.2012.704976.

    Article  CAS  Google Scholar 

  • Kujawa, J., Cerneaux, S., Koter, S., & Kujawski, W. (2014). Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Applied Materials & Interfaces, 6 14223–14230. DOI: 10.1021/am5035297.

    Article  CAS  Google Scholar 

  • Kujawski, W., Krajewska, S., Kujawski, M., Gazagnes, L., Larbot, A., & Persin, M. (2007). Pervaporation properties of fluoroalkylsilane (FAS) grafted ceramic membranes. Desalination, 205 75–86. DOI: 10.1016/j.desal.2006.04.042.

    Article  CAS  Google Scholar 

  • Kujawski, W., Sobolewska, A., Jarzynka, K., Güell, C., Ferrando, M., & Warczok, J. (2013). Application of osmotic membrane distillation process in red grape juice concentration. Journal of Food Engineering, 116 801–808. DOI: 10.1016/j.jfoodeng.2013.01.033.

    Article  CAS  Google Scholar 

  • Laganà, F., Barbieri, G., & Drioli, E. (2000). Direct contact membrane distillation: Modelling and concentration experiments. Journal of Membrane Science, 166 1–11. DOI: 10.1016/s0376-7388(99)00234-3.

    Article  Google Scholar 

  • Lawson, K. W., & Lloyd, D. R. (1997). Membrane distillation. Journal of Membrane Science, 124 1–25. DOI: 10.1016/s0376-7388(96)00236-0.

    Article  CAS  Google Scholar 

  • Martínez-Díez, L., & Tejerina-García, A. F. (1986). Diffusion of MgCl2 through nuclepore membranes of polycarbonate. Il Nuovo Cimento D, 7 771–780. DOI: 10.1007/bf02453437.

    Article  Google Scholar 

  • Petrychkovych, R., Setnickova, K., & Uchytil, P. (2013). The influence of water on butanol isomers pervaporation transport through polyethylene membrane. Separation and Purification Technology, 107 85–90. DOI: 10.1016/j.seppur.2013.01.014.

    Article  CAS  Google Scholar 

  • Phattaranawik, J., Jiraratananon, R., & Fane, A. G. (2003). Heat transport and membrane distillation coefficients in direct contact membrane distillation. Journal of Membrane Science, 212 177–193. DOI: 10.1016/s0376-7388(02)00498-2.

    Article  CAS  Google Scholar 

  • Sartorius (2015). Polytetrafluorethylene (PTFE) membrane filter 11806–47-N. Retrieved on February 2015 from http://www.sartorius.com/en/product/product-detail/11806-47-n/

  • Sha, S., Kong, Y., & Yang, J. R. (2012). The pervaporation performance of C60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: Effect of operating temperature. Energy & Fuels, 26 6925–6929. DOI: 10.1021/ef300986n.

    CAS  Google Scholar 

  • Shirazi, M. M. A., Kargari, A., Tabatabaei, M., Ismail, A. F., & Matsuura, T. (2014). Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation. Chemical Engineering and Processing: Process Intensification, 78 58–66. DOI: 10.1016/j.cep.2014.02.002.

    Article  CAS  Google Scholar 

  • Varghese, J. G., Karuppannan, R. S., & Kariduraganavar, M. Y. (2010). Development of hybrid membranes using chitosan and silica precursors for pervaporation separation of water + isopropanol mixtures. Journal of Chemical & Engineering Data, 55 2084–2092. DOI: 10.1021/je9003993.

    Article  CAS  Google Scholar 

  • Wynne-Jones, W. F. K., & Eyring, H. (1935). The absolute rate of reactions in condensed phases. The Journal of Chemical Physics, 3 492–502. DOI: 10.1063/1.1749713.

    Article  CAS  Google Scholar 

  • Zemansky, M. W. (1968). Heat and thermodynamics. New York, NY, USA: McGraw Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Kujawski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kujawa, J., Kujawski, W. Driving force and activation energy in air-gap membrane distillation process. Chem. Pap. 69, 1438–1444 (2015). https://doi.org/10.1515/chempap-2015-0155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0155

Keywords

Navigation