Skip to main content
Log in

Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polypyrrole nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in a reaction mixture containing methyl orange. They were subsequently coated with polyaniline or poly(p-phenylenediamine) in situ during the oxidation of respective monomers in their presence. A part of the coaxial nanotubes was deprotonated using ammonia solution. The conductivity of polypyrrole nanotubes of 60 S cm−1, was reduced after the coating, and again after the deprotonation, but maintained at a level above 10−4 S cm−1. Infrared and Raman spectra reflect the presence of the polymer overlayer deposited on the polypyrrole template. Thermogravimetric analysis was used as a tool for the analytical carbonisation of samples in an inert nitrogen atmosphere. The conversion of conducting polymers to nitrogen-containing carbon nanotubes was confirmed using Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonio, J. L. S., Lira, L. M., Gonçales, V. R., & Cordoba de Torresi, S. I. (2013). Fully conducting hydrosponges with electro-swelling properties tuned by synthetic parameters. Electrochimica Acta, 101, 216–224. DOI: 10.1016/j.electacta.2012.11.012.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045.

    Article  CAS  Google Scholar 

  • Bhaumik, M., McCrindle, R., & Maity, A. (2013). Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres. Chemical Engineering Journal, 228, 506–515. DOI: 10.1016/j.cej.2013.05.026.

    Article  CAS  Google Scholar 

  • Dhibar, S., & Das, C. K. (2014). Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Industrial & Engineering Chemistry Research, 53, 3495–3508. DOI: 10.1021/ie402161e.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Pašti, I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chemical Papers, 67, 781–813. DOI: 10.2478/s11696-013-0312-1.

    Google Scholar 

  • Ćirić-Marjanović, G., Mentus, S., Pašti, I., Gavrilov, N., Krstić, J., Travas-Sejdic, J., Strover, L. T., Kopecká, J., Morávková, Z., Trchová, M., & Stejskal, J. (2014). Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes. The Journal of Physical Chemistry C, 118, 14770–14784. DOI: 10.1021/jp502862d.

    Article  Google Scholar 

  • do Nascimento, G. M., Silva, C. H. B., Izumi, C. M. S., & Temperini, M. L. A. (2008). The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochimica Acta Part A, 71, 869–875. DOI: 10.1016/j.saa.2008.02.009.

    Article  Google Scholar 

  • Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10, 751–758. DOI: 10.1021/nl904286r.

    Article  CAS  Google Scholar 

  • Govindaraju, K. M., & Prakash, V. C. A. (2015). Synthesis of zinc modified poly(aniline-co-pyrrole) coatings and its anticorrosive performance on low nickel stainless steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 11–19. DOI: 10.1016/j.colsurfa.2014.10.011.

    Article  CAS  Google Scholar 

  • Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32, 876–921. DOI: 10.1016/j.progpolymsci.2007.05.012.

    Article  CAS  Google Scholar 

  • Guo, C., Li, N., Ji, L., Li, Y., Yang, X., Lu, Y., & Tu, Y. (2014). N- and O-doped carbonaceous nanotubes from polypyrrole for potential application in high-performance capacitance. Journal of Power Sources, 247, 660–666. DOI: 10.1016/j.jpowsour.2013.09.014.

    Article  CAS  Google Scholar 

  • Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024.

    Article  CAS  Google Scholar 

  • Hussain, S. T., Abbas, F., Kausar, A., & Khan, M. R. (2013). New polyaniline/polypyrrole/polythiophene and functionalized multiwalled carbon nanotube-based nanocomposites: Layer-by-layer in situ polymerization. High Performance Polymers, 25, 70–78. DOI: 10.1177/0954008312456048.

    Article  Google Scholar 

  • Jimenéz, P., Castell, P., Sainz, R., Ansón, A., Martínez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. The Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e.

    Article  Google Scholar 

  • Joulazadeh, M., Navarchian, A. H., & Niroomand, M. (2014). A comparative study on humidity sensing performances of polyaniline and polypyrrole nanostructures. Advances in Polymer Technology, 33, 21461. DOI: 10.1002/adv.21461.

    Article  Google Scholar 

  • Kim, J. W., Siochi, E. J., Carpena-Nýñez, J., Wise, K. E., Connell, J. W., Lin, Y., & Wincheski, R. A. (2013). Polyaniline/carbon nanotube sheet nanocomposites: Fabrication and characterization. ACS Applied Materials & Interfaces, 5, 8597–8606. DOI: 10.1021/am402077d.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059.

    Article  CAS  Google Scholar 

  • Kopecká, J., Kopecký, D., Vrňata, M., Fitl, P., Stejskal, J., Trchová, M., Bober, P., Morávková, Z., Prokeš, J., & Sapurina, I. (2014). Polypyrrole nanotubes: mechanism of formation. RSC Advances, 4, 1551–1558. DOI: 10.1039/c3ra45841e.

    Article  Google Scholar 

  • Lee, S. Y., Kim, J. I., & Park, S. J. (2014). Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy, 78, 298–303. DOI: 10.1016/j.energy.2014.10.011.

    Article  CAS  Google Scholar 

  • Li, Y., Zheng, J. L., Feng, J., & Jing, X. L. (2013). Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chemical Papers, 67, 876–890. DOI: 10.2478/s11696-013-0347-3.

    CAS  Google Scholar 

  • Li, J., Liu, L., Zhang, D., Yang, D., Guo, J., & Wei, J. (2014a). Fabrication of polyaniline/silver nanoparticles/multi-walled carbon nanotubes composites for flexible microelectronic circuits. Synthetic Metals, 192, 15–22. DOI: 10.1016/j.synthmet.2014.02.026.

    Article  CAS  Google Scholar 

  • Li, P., Yang, Y., Shi, E., Shen, Q., Shang, Y., Wu, S., Wei, J., Wang, K., Zhu, H., Yuan, Q., Cao, A., & Wu, D. (2014b). Core-double-shell, carbon nanotube@polypyrrole@MnO2sponge as freestanding, compressible supercapacitor electrode. ACS Applied Materials & Interfaces, 6, 5228–5234. DOI: 10.1021/am500579c.

    Article  CAS  Google Scholar 

  • Li, X., Wei, J., Chai, Y., Zhang, S., & Zhou, M. (2015). Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. Journal of Materials Science, 50, 1159–1168. DOI: 10.1007/s10853-014-8672-7.

    Article  CAS  Google Scholar 

  • Liang, B., Qin, Z., Zhao, J., Zhang, Y., Zhou, Z., & Lu, Y. Q. (2014). Controlled synthesis, core-shell structures and electrochemical properties of polyaniline/polypyrrole composite nanofibers. Journal of Materials Chemistry A, 2, 2129–2135. DOI: 10.1039/c3ta14460g.

    Article  CAS  Google Scholar 

  • Liu, Y., & Choi, H. (2013). Electrorheological response of polyaniline and its hybrids. Chemical Papers, 67, 849–859. DOI: 10.2478/s11696-013-0316-x.

    Article  CAS  Google Scholar 

  • Liu, T., Finn, L., Yu, M., Wang, H., Zhai, T., Lu, X., Tong, Y., & Li, Y. (2014). Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Letters, 14, 2522–2527. DOI: 10.1021/nl500255v.

    Article  CAS  Google Scholar 

  • Mavundla, S. E., Malgas, G. F., Motaung, D. E., & Iwuoha, E. I. (2010). Physicochemical and morphological properties of poly(aniline-co-pyrrole). Journal of Materials Science, 45, 3325–3330. DOI: 10.1007/s10853-010-4351-5.

    Article  CAS  Google Scholar 

  • Mi, H., Zhang, X., Ye, X., & Yang, S. (2008). Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. Journal of Power Sources, 176, 403–409. DOI: 10.1016/j.jpowsour.2007.10.070.

    Article  CAS  Google Scholar 

  • Micić, D., Šljukić, B., Zujovic, Z., Travas-Sejdic, J., & Ćirićc-Marjanović, G. (2014). Electrocatalytic activity of carbonized nanostructured polyanilines for oxidation reactions: Sensing of nitrite ions and ascorbic acid. Electrochimica Acta, 120, 147–158. DOI: 10.1016/j.electacta.2013.12.069.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Tomšík, E., Šechvala, J., & Stejskal, J. (2012a). Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI: 10.1016/j.polymdegradstab.2012.05.019.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2012b). The carbonization of thin polyaniline films. Thin Solid Films, 520, 6088–6094. DOI: 10.1016/j.tsf.2012.05.067.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Tomšík, E., & Stejskal, J. (2013). Influence of ethanol on the chain-ordering of carbonised polyaniline. Chemical Papers, 67, 919–932. DOI: 10.2478/s11696-013-0329-5.

    Article  Google Scholar 

  • Omastová, M., Mosnáčková, K., Trchová, M., Konyushenko, E. N., Stejskal, J., Fedorko, P., & Prokeš, J. (2010). Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synthetic Metals, 160, 701–707. DOI: 10.1016/j.synthmet.2010.01.004.

    Article  Google Scholar 

  • Paligová, M., Vilčáková, J., Sáha, P., Křesálek, V., Stejskal, J., & Quadrat, O. (2004). Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base. Physica A: Statistical Mechanics and its Applications, 335, 421–429. DOI: 10.1016/j.physa.2003.12.002.

    Article  Google Scholar 

  • Peng, T., Sun, W., Huang, C., Yu, W., Sebo, B., Dai, Z., Guo, S., & Zhao, X. Z. (2014). Self-assembled free-standing polypyrrole nanotube membrane as an efficient FTO- and Pt-free counter electrode for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 6, 14–17. DOI: 10.1021/am404265q.

    Article  CAS  Google Scholar 

  • Quadrat, O., & Stejskal, J. (2006). Polyaniline in electrorheology. Journal of Industrial and Engineering Chemistry, 12, 352–361.

    CAS  Google Scholar 

  • Radhakrishnan, S., Sumathi, C., Dharuman, V., & Wilson, J. (2013). Polypyrrole nanotubes-polyaniline composite for DNA detection using methylene blue as intercalator. Analytical Methods, 5, 1010–1015. DOI: 10.1039/c2ay26127h.

    Article  CAS  Google Scholar 

  • Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034.

    Article  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3.

    Article  CAS  Google Scholar 

  • Šeděnková, I., Trchová, M., & Stejskal, J. (2008). Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water — FTIR and Raman spectroscopic studies. Polymer Degradation and Stability, 93, 2147–2157. DOI: 10.1016/j.polymdegradstab.2008.08.007.

    Article  Google Scholar 

  • Škodová, J., Kopecký, D., Vrňata, M., Varga, M., Prokeš, J., Cieslar, M., Bober, P., & Stejskal, J. (2013). Polypyrrole-silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polymer Chemistry, 4, 3610–3616. DOI: 10.1039/c3py00250k.

    Article  Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Ananieva, I. A., Janča, J., Prokeš, J., Fedorova, S., & Sapurina, I. (2004). Poly(aniline-copyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synthetic Metals, 146, 29–36. DOI: 10.1016/j.synthmet.2004.06.013.

    Article  CAS  Google Scholar 

  • Stejskal, J., Prokeš, J., & Trchová, M. (2008). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Stejskal, J. (2015). Polymers of phenylenediamines. Progress in Polymer Science, 41, 1–31. DOI: 10.1016/j.progpolymsci.2014.10.007.

    Article  CAS  Google Scholar 

  • Strong, V., Wang, Y., Patatanyan, A., Whitten, P. G., Spinks, G. M., Wallace, G. G., & Kaner, R. B. (2011). Direct submicrometer patterning of nanostructured conducting polymer films via a low-energy infrared laser. Nano Letters, 11, 3128–3135. DOI: 10.1021/nl2011593.

    Article  CAS  Google Scholar 

  • Tomšík, E., Morávková, Z., Stejskal, J., Trchová, M., Šálek, P., Kovářová, J., Zemek, J., Cieslar, M., & Prokeš, J. (2013). Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 67, 1054–1065. DOI: 10.2478/s11696-013-0348-2.

    Google Scholar 

  • Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001.

    Article  Google Scholar 

  • Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6.

    Article  Google Scholar 

  • Van Dommele, S., de Jong, K. P., & Bitter, J. H. (2006). Nitrogen-containing carbon nanotubes as solid base catalysts. Chemical Communications, 2006, 4859–4861. DOI: 10.1039/b610208e.

    Article  Google Scholar 

  • Vujković, M., Gavrilov, N., Pašti, I., Krstić, J., Travas-Sejdic, J., Ćirić-Marjanović, G., & Mentus, S. (2013). Superior capacitive and electrocatalytic properties of carbonized nanostructured polyaniline upon a low-temperature hydrothermal treatment. Carbon, 64, 472–486. DOI: 10.1016/j.carbon.2013.07.100.

    Article  Google Scholar 

  • Wang, Z. L., He, X. J., Ye, S. H., Tong, Y. X., & Li, G. R. (2014). Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Applied Materials & Interfaces, 6, 642–647. DOI: 10.1021/am404751k.

    Article  CAS  Google Scholar 

  • Wilson, J., Radhakrishnan, S., Sumathi, C., & Dharuman, V. (2012). Polypyrrole—polyaniline—Au (PPy—PANi—Au) nano composite films for label-free electrochemical DNA sensing. Sensors and Actuators B: Chemical, 171–172, 216–222. DOI: 10.1016/j.snb.2012.03.019.

    Article  Google Scholar 

  • Wu, W., Li, Y., Yang, L., Ma, Y., & Yan, X. (2014). Preparation and characterization of coaxial multiwalled carbon nan-otubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synthetic Metals, 193, 48–57. DOI: 10.1016/j.synthmet.2014.03.029.

    Article  CAS  Google Scholar 

  • Zhao, S., Wu, M., Zhao, F., & Zeng, B. (2013). Electrochemical preparation of polyaniline-polypyrrole solid-phase microextraction coating and its application in the GC determination of several esters. Talanta, 117, 146–151. DOI: 10.1016/j.talanta.2013.08.060.

    Article  CAS  Google Scholar 

  • Zhou, Z., Zhang, Z., Peng, H., Qin, Y., Li, G., & Chen, K. (2014). Nitrogen- and oxygen-containing activated carbon nanotubes with improved capacitive properties. RSC Advances, 4, 5524–5530. DOI: 10.1039/c3ra45076g.

    Article  CAS  Google Scholar 

  • Zhu, Y. F., Zhang, L., Natsuki, T., Fu, Y. Q., & Ni, Q. Q. (2012a). Synthesis of hollow poly(aniline-co-pyrrole)-Fe3O4 composite nanospheres and their microwave absorption behavior. Synthetic Metals, 162, 337–343. DOI: 10.1016/j.synthmet.2011.12.015.

    Article  CAS  Google Scholar 

  • Zhu, Y., Ni, Q. Q., Zhang, L., & Natsuki, T. (2012b). Hollow poly(aniline-co-pyrrole)—Fe3O4 composite nanospheres: Synthesis and characterization. Journal of Nanoelectronics and Optoelectronics, 7, 292–296. DOI: 10.1166/jno.2012.1307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stejskal, J., Sapurina, I., Trchová, M. et al. Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation. Chem. Pap. 69, 1341–1349 (2015). https://doi.org/10.1515/chempap-2015-0152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0152

Keywords

Navigation