Advertisement

Chemical Papers

, Volume 69, Issue 10, pp 1361–1366 | Cite as

Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene

  • Han-Cheng Zhou
  • Xiu-Lei Li
  • Juan-Li Liu
  • Cheng Peng
  • Bin Zhang
  • Jin Chen
  • Qiong Su
  • Lan Wu
  • You-Zhu Yuan
Original Paper
  • 14 Downloads

Abstract

Several Lewis acid ionic liquids (LAILs) with different acidic scales were synthesised and used as catalysts for the synthesis of benzofuranol by condensation of pyrocatechol and 3-chloro-2-methylpropene in one pot. The catalytic activity of these ionic liquids was correlated with their Lewis acidity. Low to moderate conversion with excellent selectivity to benzofuranol was obtained in the presence of the appropriate LAILs. Compared to the two-step synthetic method currently used in industry, a higher yield plateau (81.1%) of benzofuranol was achieved in the presence of [BMIm][AlCl4] IL as catalyst at 418 K after 4 h. Furthermore, the catalyst is readily separated from the resultant products via decantation and could be reused after treatment in vacuum.

Keywords

benzofuranol condensation Lewis acid ionic liquid acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2017_690101361_MOESM1_ESM.doc (664 kb)
Supplementary material, approximately 680 KB.

References

  1. Chauvin, Y., Olivier, H., Wyrvalski, C. N., Simon, L. C., & de Souza, R. F. (1997). Oligomerization of n-butenes catalyzed by nickel complexes dissolved in organochloroalumi-nate ionic liquids. Journal of Catalysis, 165, 275–278. DOI:  10.1006/jcat.1997.1488.CrossRefGoogle Scholar
  2. Chen, Y., Zu, Y. G., Fu, Y. J., Zhang, X., Yu, P., Sun, G. Y., & Efforth, T. (2010). Efficient Lewis acid ionic liquid-catalyzed synthesis of the key intermediate of coenzyme Q10 under microwave irradiation. Molecules, 15, 9486–9495. DOI:  10.3390/molecules15129486.CrossRefGoogle Scholar
  3. Engler, T. A., Lynch, K. O., Reddy, J. P., & Gregory, G. S. (1993). Synthetic pterocarpans with anti-HIV activity. Bioorganic & Medicinal Chemistry Letters, 3, 1229–1232. DOI:  10.1016/s0960-894x(00)80321-2.CrossRefGoogle Scholar
  4. Greaves, T. L., & Drummond, C. J. (2008). Protic ionic liquids: Properties and applications. Chemical Reviews, 108, 206–237. DOI:  10.1021/cr068040u.CrossRefGoogle Scholar
  5. Handy, S. T. (2011). Application of ionic liquids in science and technology (1st ed.). Rijeka, Croatia: In Tech.CrossRefGoogle Scholar
  6. Harjani, J. R., Nara, S. J., & Salunkhe, M. M. (2002). Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the Knoevenagel condensation. Tetrahedron Letters, 43, 1127–1130. DOI:  10.1016/s0040-4039(01)02341-3.CrossRefGoogle Scholar
  7. Kore, R., & Srivastava, R. (2013). A simple, eco-friendly and recyclable bi-functional acidic ionic liquid catalysts for Beckmann rearrangement. Journal of Molecular Catalysis A, 376, 90–97. DOI:  10.1016/j.molcata.2013.04.021.CrossRefGoogle Scholar
  8. Kossakowski, J., & Ostrowska, K. (2006). Synthesis of new derivatives of 2,3-dihydro-7-benzo[b]furanol with potential pharmacological avtivity. Acta Poloniae Pharmaceutica, 63, 271–275.Google Scholar
  9. Kossakowski, J., Ostrowska, K., Struga, M., & Stefaňska, J. (2009). Synthesis of new derivatives of 2,2-dimethyl-2,3-dihydro-7-benzo[b]furanol with potential antimicrobial activity. Medicinal Chemistry Research, 18, 555–565. DOI:  10.1007/s00044-008-9149-5.CrossRefGoogle Scholar
  10. MacFarlance, D. R., Pringle, J. M., Johansson, K. M., Forsyth, S. A., & Forsyth, M. (2006). Lewis base ionic liquids. Chemical Communications, 18, 1905–1917. DOI:  10.1039/b516961p.CrossRefGoogle Scholar
  11. Mathew, N. T., Khaire, S., Mayadevi, S., Jha, R., & Sivasanker, S. (2005). Rearrangement of allyl phenyl ether over Al-MCM-41. Journal of Catalysis, 229, 105–113. DOI:  10.1016/j.jcat.2004.09.027.CrossRefGoogle Scholar
  12. Murakata, M., & Kimura, M. (2010). A new strategy for the synthesis of 4,6-di-tert-butyl-2,2-dipentyl-2,3-dihydro-5-benzofuranol (BO-653), a potent antiatherogenic antioxidant. Tetrahedron Letters, 51, 4950–4952. DOI:  10.1016/j.tetlet.2010.07.035.CrossRefGoogle Scholar
  13. Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A, 373, 1–56. DOI:  10.1016/j.apcata.2009.10.008.CrossRefGoogle Scholar
  14. Seo, J., Kang, S. I., Won, D., Kim, M., Ryu, J. Y., Kang, S. W., Um, B. H., Pan, C. H., Ahn, J. H., Chong, Y., Kanaly, R. A., Han, J., & Hur, H. G. (2011). Absolute configuration-dependent epoxide formation from isoflavan-4-ol stereoisomers by biphenyl dioxygenase of Pseudomonas pseudoalcaligenes strain KF707. Applied Microbiology and Biotechnology, 89, 1773–1782. DOI:  10.1007/s00253-010-2989-1.CrossRefGoogle Scholar
  15. Tamura, K., Kato, Y., Ishikawa, A., Kato, Y., Himori, M., Yoshida, M., Takashima, Y., Suzuki, T., Kawabe, Y., Cynshi, O., Kodama, T., Niki, E., & Shimizu, M. (2003). Design and synthesis of 4,6-di-tert-butyl-2,3-dihydro-5-benzofuranols as a novel series of antiatherogenic antioxidants. Journal of Medicinal Chemistry, 46, 3083–3093. DOI:  10.1021/jm030062a.CrossRefGoogle Scholar
  16. Wang, Y., Luo, X. F., Hu, A. X., Zhang, J. Y., & Yang, L. T. (2011). Synthesis of carbofuran phenol by aluminiumisopropoxide carboxylate. Chinese Journal of Organic Chemistry, 31, 1127–1130.Google Scholar
  17. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI:  10.1021/cr980032t.CrossRefGoogle Scholar
  18. Yang, Y. L., & Kou, Y. (2004). Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chemical Communications, 2004, 226–227. DOI:  10.1039/b311615h.CrossRefGoogle Scholar
  19. Yang, L., Qin, L. H., Bligh, S. W. A., Bashall, A., Zhang, C. F., Zhang, M. A., Wang, Z. T., & Xu, L. S. (2006). A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activies. Bioorganic & Medicinal Chemistry, 14, 3496–3501. DOI:  10.1016/j.bmc.2006.01.004.CrossRefGoogle Scholar
  20. Yue, Q. F., Xiao, L. F., Zhang, M. L., & Bai, X. F. (2013). The glycolysis of poly(ethylene terephthalate) waste: Lewis acidic ionic liquids as high efficient catalysts. Polymers, 5, 1258–1271. DOI:  10.3390/polym5041258.CrossRefGoogle Scholar
  21. Zhao, H. B., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 316, 1597–1600. DOI:  10.1126/science.1141199.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Han-Cheng Zhou
    • 1
  • Xiu-Lei Li
    • 2
  • Juan-Li Liu
    • 1
  • Cheng Peng
    • 1
  • Bin Zhang
    • 1
  • Jin Chen
    • 3
  • Qiong Su
    • 1
  • Lan Wu
    • 1
  • You-Zhu Yuan
    • 3
  1. 1.Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical EngineeringNorthwest University for NationalitiesLanzhouChina
  2. 2.School of Physical Science and TechnologyLanzhou UniversityLanzhouChina
  3. 3.State Key Laboratory of Physical Chemistry of Solid Surfaces and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations