Skip to main content
Log in

New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ε-caprolactone and rac-lactide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Yttrium and lanthanum amido-complexes with bis(pyrazol-1-yl)acetates in their coordination spheres were studied as the catalysts in ε-caprolactone and lactide ring-opening polymerisation. A high molecular mass poly(ε-caprolactone) (PCL) was obtained in almost quantitative yield under mild conditions. rac-Lactide polymerisations were less efficient and required quite harsh experimental conditions to obtain atactic PLA samples with moderate yields. The average chain-length of PCL was dependent upon the choice of the metal centre and the presence of substituents on the pyrazole rings of the ancillary ligand. The ground-state geometries of the complexes and the first stages of ε-caprolactone polymerisation were computationally modelled by means of DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amgoune, A., Thomas, C. M., & Carpentier, J. F. (2007). Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure and Applied Chemistry, 79, 2013–2030. DOI: 10.1351/pac200779112013.

    Article  CAS  Google Scholar 

  • Arnold, P. L., Buffet, J. C., Blaudeck, R. P., Sujecki, S., Blake, A. J., & Wilson, C. (2008). C3-symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide. Angewandte Chemie International Edition, 47, 6033–6036. DOI: 10.1002/anie.200801279.

    Article  CAS  Google Scholar 

  • Beck, A., Weibert, B., & Burzlaff, N. (2001). Monoanionic N,N,O-scorpionate ligands and their iron(II) and zinc(II) complexes: Models for mononuclear active sites of non-heme iron oxidases and zinc enzymes. European Journal of Inorganic Chemistry, 2001, 521–527. DOI: 10.1002/1099-0682(200102)2001:2<521∷AID-EJIC521>3.0.CO;2-Q.

    Article  Google Scholar 

  • Bortoluzzi, M., Paolucci, G., Fregona, D., Dalla Via, L., & Enrichi, F. (2012). Group 3 and lanthanide triflate-complexes with [N,N,O]-donor ligands: synthesis, characterization, and cytotoxic activity. Journal of Coordination Chemistry, 65, 3903–3916. DOI: 10.1080/00958972.2012.728591.

    Article  CAS  Google Scholar 

  • Bradley, D. C., Ghotra, J. S., & Hart, F. A. (1973). Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of triss(trimethylsilyl)amidolanthanides. Journal of the Chemical Society, Dalton Transactions, 1973, 1021–1023. DOI: 10.1039/dt9730001021.

    Article  Google Scholar 

  • Brandolini, A. J., & Hills, D. D. (2000). NMR spectra of polymers and polymer additives. New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Burzlaff, N., Hegelmann, I., & Weibert, B. (2001a). Bis(pyrazol-1-yl)acetates as tripodal “scorpionate” ligands in transition metal carbonyl chemistry: syntheses, structures and reactivity of manganese and rhenium carbonyl complexes of the type [LM(CO)3] (L = bpza, bdmpza). Journal of Organometallic Chemistry, 626, 16–23. DOI: 10.1016/s0022-328x(01)00648-9.

    Article  CAS  Google Scholar 

  • Chamberlain, B. M., Sun, Y., Hagadorn, J. R., Hemmesch, E. W., Young, V. G., Jr., Pink, M., Hillmyer, M. A., & Tolman, W. B. (1999). Discrete yttrium(III) complexes as lactide polymerization catalysts. Macromolecules, 32, 2400–2402. DOI: 10.1021/ma990005k.

    Article  CAS  Google Scholar 

  • Claridge, T. D. W. (2009). Diffusion NMR spectroscopy. In T. D. W. Claridge (Ed.), High-resolution NMR techniques in organic chemistry (Tetrahedron organic chemistry series, Vol. 27, Chapter 9, pp. 303–334). Amsterdam, The Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models (2nd ed.). Chichester, UK: Wiley.

    Google Scholar 

  • Darensbourg, D. J., Choi, W., Karroonnirun, O., & Bhuvanesh, N. (2008). Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals. Production of poly(lactide), poly(trimethylene carbonate), and their copolymers. Macromolecules, 41, 3493–3502. DOI: 10.1021/ma800078t.

    Article  CAS  Google Scholar 

  • Dash, T. K., & Konkimalla, B. (2012). Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158, 15–33. DOI: 10.1016/j.jconrel.2011.09.064.

    Article  CAS  Google Scholar 

  • Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (NIC series, Vol. 1, pp. 479–508). Jülich, Germany: John von Neumann Institute for Computing.

    Google Scholar 

  • Dove, A. P., Gibson, V. C., Marshall, E. L., Rzepa, H. S., White, A. J. P., & Williams, D. J. (2006). Synthetic, structural, mechanistic, and computational studies on single-site β-diketiminate tin(II) initiators for the polymerization of rac-lactide. Journal of the American Chemical Society, 128, 9834–9843. DOI: 10.1021/ja061400a.

    Article  CAS  Google Scholar 

  • Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12, 1841–1846. DOI: 10.1002/1521-4095(200012)12:23<1841∷AID-ADMA1841>3.0.CO;2-E.

    Article  CAS  Google Scholar 

  • Evans, W. J., Shreeve, J. L., & Doedens, R. J. (1993). Isolation and crystal structure of a six coordinate yttrium trichloride complex of ε-caprolactone, YCl3(C6H10O2)3. Inorganic Chemistry, 32, 245–246. DOI: 10.1021/ic00055a001.

    Article  CAS  Google Scholar 

  • Ha, C. S., & Gardella, J. A., Jr. (2005). Surface chemistry of biodegradable polymers for drug delivery systems. Chemical Reviews, 105, 4205–4232. DOI: 10.1021/cr040419y.

    Article  CAS  Google Scholar 

  • Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448975.

    Article  CAS  Google Scholar 

  • Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261. DOI: 10.1063/1.1677527.

    Article  CAS  Google Scholar 

  • Hirano, S., & Suzuki, K. T. (1996). Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 104 (Suppl. 1), 85–95.

    Article  CAS  Google Scholar 

  • Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38, 3484–3504. DOI: 10.1039/b820162p.

    Article  CAS  Google Scholar 

  • Lin, C. Y., George, M. W., & Gill, P. M. W. (2004). EDF2: A density functional for predicting molecular vibrational frequencies. Australian Journal of Chemistry, 57, 365–370. DOI: 10.1071/ch03263.

    Article  CAS  Google Scholar 

  • Mehta, R., Kumar, V., Bhunia, H., & Upadhyay, S. N. (2005). Synthesis of poly(lactic acid): A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 45, 325–349. DOI: 10.1080/15321790500304148.

    Article  Google Scholar 

  • Milione, S., Bertolasi, V., Cuenca, T., & Grassi, A. (2005). Titanium complexes bearing a hemilabile heteroscorpionate ligand: Synthesis, reactivity, and olefin polymerization activity. Organometallics, 24, 4915–4925. DOI: 10.1021/om050063w.

    Article  CAS  Google Scholar 

  • O’Keefe, B. J., Breyfogle, L. E., Hillmyer, M. A., & Tolman, W. B. (2002). Mechanistic comparison of cyclic ester polymerizations by novel iron(III)-alkoxide complexes: Single vs multiple site catalysis. Journal of the American Chemical Society, 124, 4384–4393. DOI: 10.1021/ja012689t.

    Article  Google Scholar 

  • Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L., Martínez-Caballero, E., Rodríguez, A. M., & López-Solera, I. (2005). First complexes of scandium and yttrium with NNO and NNS heteroscorpionate ligands. Inorganic Chemistry, 44, 5336–5344. DOI: 10.1021/ic050525y.

    Article  CAS  Google Scholar 

  • Otero, A., Fernández-Baeza, J., Lara-Sánchez, A., & Sánchez-Barba, L. F. (2013). Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moiety: Catalytic chemistry. Coordination Chemistry Reviews, 257, 1806–1868. DOI: 10.1016/j.ccr.2013.01.027.

    Article  CAS  Google Scholar 

  • Palard, I., Soum, A., & Guillaume, S. M. (2004). Unprecedented polymerization of ε-caprolactone initiated by a single-site lanthanide borohydride complex, [Sm(η-C5Me5)2(BH4)(thf)]: Mechanistic insights. Chemistry — A European Journal, 10, 4054–4062. DOI: 10.1002/chem.200400319.

    Article  CAS  Google Scholar 

  • Sutar, A. K., Maharana, T., Dutta, S., Chen, C. T., & Lin, C. C. (2010). Ring-opening polymerization by lithium catalysts: an overview. Chemical Society Reviews, 39, 1724–1746. DOI: 10.1039/B912806a.

    Article  CAS  Google Scholar 

  • Wahit, M. U., Akos, N. I., & Laftah, W. A. (2012). Influence of natural fibers on the mechanical properties and biodegradation of poly(lactic acid) and poly(ε-caprolactone) composites: A review. Polymer Composites, 33, 1045–1053. DOI: 10.1002/pc.22249.

    Article  CAS  Google Scholar 

  • Williams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, W. G., Jr., Hillmyer, M. A., & Tolman, W. B. (2003). A highly active zinc catalyst for the controlled polymerization of lactide. Journal of the American Chemical Society, 125, 11350–11359. DOI: 10.1021/ja0359512.

    Article  CAS  Google Scholar 

  • Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.

    Article  CAS  Google Scholar 

  • Zell, M. T., Padden, B. E., Paterick, A. J., Thakur, K. A. M., Kean, R. T., Hillmyer, M. A., & Munson, E. J. (2002). Unambiguous determination of the 13C and 1H NMR stereosequence assignments of polylactide using high-resolution solution NMR spectroscopy. Macromolecules, 35, 7700–7707. DOI: 10.1021/ma0204148.

    Article  CAS  Google Scholar 

  • Zhang, L., Niu, Y., Wang, Y., Wang, P., & Shen, L. (2008). Ring-opening polymerization of ε-caprolactone by lanthanide tris(2,4,6-tri-tert-butylphenolate)s: Characteristics, kinetics and mechanism. Journal of Molecular Catalysis A: Chemical, 287, 1–4. DOI: 10.1016/j.molcata.2008.02.017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Scrivanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scrivanti, A., Bortoluzzi, M. & Gatto, M. New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ε-caprolactone and rac-lactide. Chem. Pap. 70, 53–60 (2016). https://doi.org/10.1515/chempap-2015-0144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0144

Keywords

Navigation