Skip to main content
Log in

Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Organophosphorus (OP) compounds are extensively used in agricultural practice for pest management. However, their residues have a long half-life in the ecosystem as well as in the agro-products, posing a serious threat to human and animal health. Aryldialkylphosphatase (EC 3.1.8.1) is widely used in detoxification procedures. In the present study, aryldialkylphosphatase was immobilised on synthesised cross-linked nano-sized gel particles, also known as nanogels, in order to enhance the enzyme’s physicochemical properties. Accordingly, a new nanogel consisting of chitosan and myristic acid (CMA nanogel) was synthesised and characterised by way of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The aryldialkylphosphatase-CMA nanogel conjugate was then assayed by FTIR, and its physicochemical characteristics were also investigated. The data obtained from SEM and TEM showed the nanogels to be homogenous spherical particles less than 50 nm in diameter. The proper formation of the nanogel and nanobioconjugate was also confirmed by FTIR spectra. In comparison with the free enzyme, the pH and thermal stability of the aryldialkylphosphatase were enhanced by the covalent immobilisation. Moreover, the immobilised enzyme could maintain approximately half of its activity over more than one month. The kinetic parameters of the aryldialkylphosphatase-CMA nanogel conjugate were also shown to undergo remarkable improvements, hence the synthesised CMA-nanogel could act as a promising support for aryldialkylphosphatase immobilisation. It is suggested that the aryldialkylphosphatase-CMA nanogel could be used for detoxifying paraoxon; a nerve agent. Further clinical experiments are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Azodi, M., Falamaki, C., & Mohsenifar, A. (2011). Sucrose hydrolysis by invertase immobilized on functionalized porous silicon. Journal of Mollecular Catalysis B, 69, 154–160. DOI: 10.1016/j.molcatb.2011.01.011.

    Article  CAS  Google Scholar 

  • Bekale, L., Agudelo, D., & Tajmir-Riahi, H. A. (2015). Effect of polymer molecular weight on chitosan-protein interaction. Colloids and Surfaces B, 125, 309–317. DOI: 10.1016/j.colsurfb.2014.11.037.

    Article  CAS  Google Scholar 

  • Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., Tabatabaei, M., & Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 54, 310–319. DOI: 10.1016/j.indcrop.2014.01.033.

    Article  CAS  Google Scholar 

  • Cao, X. D., Chen, C., Yu, H. J., & Wang, P. (2015). Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy. Biotechnology Letters, 37, 81–88. DOI: 10.1007/s10529-014-1664-5.

    Article  CAS  Google Scholar 

  • Çetinus, Ş. A., & Öztop, H. N. (2003). Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme and Microbial Technology, 32, 889–894. DOI: 10.1016/s0141-0229(03)00065-6.

    Article  Google Scholar 

  • Chang, M. Y., & Juang, R. S. (2005). Activities, stabilities and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme and Microbial Technology, 36, 75–82. DOI: 10.1016/j.enzmictec.2004.06.013.

    Article  CAS  Google Scholar 

  • Chapalamadugu, S., & Chaudhry, G. S. (1992). Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Critical Reviews in Biotechnology, 12, 357–589. DOI: 10.3109/07388559209114232.

    Article  CAS  Google Scholar 

  • Clark, D. S. (1994). Can immobilization be exploited to modify enzyme activity? Trends in Biotechnology, 12, 439–443. DOI: 10.1016/0167-7799(94)90018-3.

    Article  CAS  Google Scholar 

  • Colak, U., & Gençer, N. (2012). Immobilization of paraoxonase onto chitosan and its characterization. Artificial Cells, Blood Substitutes and Biotechnology, 40, 290–295. DOI: 10.3109/10731199.2011.652258.

    Article  CAS  Google Scholar 

  • Dalvadi, H., & Patel, J. K. (2010). Chronpharmaceutics, pulsatile drug delivery system as current trend. Chronpharmaceutics/Asian Journal of Pharmaceutical Sciences, 5, 204–230.

    Google Scholar 

  • Donarski, W. J., Dumas, D. P., Heitmeyer, D. P., Lewis, V. E., & Raushel, F. M. (1989). Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry, 28, 4650–4655. DOI: 10.1021/bi00437a021.

    Article  CAS  Google Scholar 

  • Edama, N. A., Sulaiman, A., & Rahim, S. N. A. (2014). Enzymatic saccharification of tapioca processing wastes into biosugars through immobilization technology (Mini Review). Biofuel Research Journal, 1, 2–6.

    Article  CAS  Google Scholar 

  • Förster, S., & Plantenberg, T. (2002). From self-organizing polymers to nanohybrid and biomaterials. Angewandte Chemie International Edition, 41, 689–714. DOI: 10.1002/1521-3773(20020301)41:5<688∷aid-anie688>3.0.co;2-3.

    Google Scholar 

  • Hashemifard, N., Mohsenifar, A., Ranjbar, B., Allameh, A., Lotfi, A. S., & Etemadikia, B. (2010). Fabrication and kinetic studies of a novel silver nanoparticles-glucose oxidase bioconjugate. Analytica Chimica Acta, 675, 181–184. DOI: 10.1016/j.aca.2010.07.004.

    Article  CAS  Google Scholar 

  • Khalili, S. T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., Bayat, M., & Tabatabaei, M. (2015). Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT — Food Science and Technology, 60, 502–508. DOI: 10.1016/j.lwt.2014.07.054.

    Article  CAS  Google Scholar 

  • Kouassi, G. K., Irudayaraj, J., & McCarty, G. (2005). Examination of cholesterol oxidase immobilization to magnetic nanoparticles. Journal of Nanobiotechnology, 3, 1–10. DOI: 10.1186/1477-3155-3-1.

    Article  Google Scholar 

  • Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology, 35, 126–139. DOI: 10.1016/j.enzmictec.2003.12.013.

    Article  CAS  Google Scholar 

  • Laider, K. J., & Bunting, P. S. (1980). The kinetics of immobilized enzyme systems. In D. L. Purich (Ed.), Methods in Enzymology (Vol. 64, pp. 227–248). New York, NY, USA: Academic Press.

    Google Scholar 

  • Martin, M. T., Plou, F. J., Alcalde, M., & Ballesteros, A. (2003). Immobilization on Eupergit C of cyclodextrin glucosyltrans-ferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis B, 21, 299–308. DOI: 10.1016/S1381-1177(02)00264-3.

    Article  CAS  Google Scholar 

  • Mulbry, W. W., & Karns, J. S. (1989). Parathion hydrolase specified by the Flavobacterium opd gene: Relationship between the gene and protein. Journal of Bacteriology, 171, 6740–6746.

    Article  CAS  Google Scholar 

  • Munnecke, D. M. (1979). Hydrolysis of organophosphate insecticides by an immobilized-enzyme system. Biotechnology and Bioengineering, 21, 2247–2261. DOI: 10.1002/bit.260211207.

    Article  CAS  Google Scholar 

  • Oh, J. K., Drumright, R., Siegwart, D. J., & Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 33, 448–477. DOI: 10.1016/j.progpolymsci.2008.01.002.

    Article  CAS  Google Scholar 

  • Oh, J. K., Lee, D. I., & Park, J. M. (2009). Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 34, 1261–1282. DOI: 10.1016/j.progpolymsci.2009.08.001.

    Article  CAS  Google Scholar 

  • Palmieri, G., Giardina, P., Desiderio, B., Marzullo, L., Giamberini, M., & Sannia, G. (1994). A new enzyme immobilization procedure using copper alginate gel: Application to a fungal phenol oxidase. Enzyme and Microbial Technology, 16, 151–158. DOI: 10.1016/0141-0229(94)90078-7.

    Article  CAS  Google Scholar 

  • Russell, R. J., Pishko, M. V., Simonian, A. L., & Wild, J. R. (1999). Poly(ethylene glycol) hydrogel-encapsulated fluorophore-enzyme conjugates for direct detection of organophosphorus neurotoxins. Analytical Chemistry, 71, 4909–4912. DOI: 10.1021/ac990901u.

    Article  CAS  Google Scholar 

  • Şahin, F., Demirel, G., & Tümtürk, H. (2005). A novel matrix for the immobilization of acetylcholinesterase. International Journal of Biological Macromolecules, 37, 148–153. DOI: 10.1016/j.ijbiomac.2005.10.003.

    Article  Google Scholar 

  • Tuovinen, K., Kaliste-Korhonen, E., Raushel, F. M., & Hänninen, O. (1994). Phosphotriesterase — a promising candidate for use in detoxification of organophosphates. Fundamental and Applied Toxicology, 23, 578–584. DOI: 10.1006/faat.1994.1143.

    Article  CAS  Google Scholar 

  • Willner, I., Baron, R., & Willner, B. (2007). Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics, 22, 1841–1852. DOI: 10.1016/j.bios.2006.09.018.

    Article  CAS  Google Scholar 

  • Yang, Y. H., Yang, H. F., Yang, M. H., Liu, Y. L., Shen, G. L., & Yu, R. Q. (2004). Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/chitosan composite film as immobilization matrix. Analytica Chimica Acta, 525, 213–220. DOI: 10.1016/j.aca.2004.07.071.

    Article  CAS  Google Scholar 

  • Yang, G., Wu, J. P., Xu, G., & Yang, L. R. (2010). Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B, 78, 351–536. DOI: 10.1016/j.colsurfb.2010.03.022.

    Article  CAS  Google Scholar 

  • Zhaveh, S., Mohsenifar, A., Beiki, M., Khalili, S. T., Abdollahi, A., Rahmani-Cherati, T., & Tabatabaei, M. (2015). Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 69, 251–256. DOI: 10.1016/j.indcrop.2015.02.028.

    Article  CAS  Google Scholar 

  • Ziaee, M., Moharramipour, S., & Mohsenifar, A. (2014a). MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. Journal of Pest Science, 87, 691–699. DOI: 10.1007/s10340-014-0590-6.

    Article  Google Scholar 

  • Ziaee, M., Moharramipour, S., & Mohsenifar, A. (2014b). Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum. Journal of Applied Entomology, 138, 763–771. DOI: 10.1111/jen.12133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Mohsenifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namini, S.M.M., Mohsenifar, A., Karami, R. et al. Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel. Chem. Pap. 69, 1291–1297 (2015). https://doi.org/10.1515/chempap-2015-0143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0143

Keywords

Navigation