Chemical Papers

, Volume 69, Issue 10, pp 1277–1283 | Cite as

Gas permeation processes in biogas upgrading: A short review

  • Magda Kárászová
  • Zuzana Sedláková
  • Pavel Izák
Review

Abstract

Biogas upgrading is a widely studied and discussed topic. Many different technologies have been employed to obtain biomethane from biogas. Methods like water scrubbing or pressure swing adsorption are commonly used and can be declared as well established. Membrane gas permeation found its place among the biogas upgrading methods some years ago. Here, we try to summarize the progress in the implementation of gas permeation in biogas upgrading. Gas permeation has been already accepted as a commercially feasible method for CO2 removal. Many different membranes and membrane modules have been tested and also some commercial devices are available. On the other hand, utilization of gas permeation in other steps of biogas upgrading like desulfurization, drying, or VOC removal is still rather rare. This review shows that membrane gas permeation is able to compete with classical biogas upgrading methods and tries to point out the main challenges of the research.

Keywords

biogas upgrading membranes gas permeation CO2 removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abatzoglou, N. & Boivin, S. (2009). A review of biogas purification processes. Biofuels, Bioproducts & Biorefining, 3, 42–71. DOI:  10.1002/bbb.117.CrossRefGoogle Scholar
  2. Air Liquide (2015). MEDAL: Biogaz membrane technology for upgrading biogas to bio-methane. Retrieved January 2, 2015, from http://www.medal.airliquide.com/en/biogaz-systems/medal-biogaz-membranes.html
  3. Air Products and Chemicals (2015). PRISM® Membrane Separators for biogas upgrading. Retrieved January 2, 2015, from http://www.airproducts.com/∼/media/Files/PDF/products/supply-options/prism-membrane/en-prism-membrane-separators-for-biogas-upgrading.pdf
  4. Ajhar, M., & Melin, T. (2006). Siloxane removal with gas permeation membranes. Desalination, 200, 234–235. DOI:  10.1016/j.desal.2006.03.308.CrossRefGoogle Scholar
  5. Baker, R. W. (2002). Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 41, 1393–1411. DOI:  10.1021/ie0108088.CrossRefGoogle Scholar
  6. BORSIG Membrane Technology (2015). BORSIG Biogas Processing: CO2separation with membrane technology. Retrieved January 2, 2015, from http://mt.borsig.de/en/products/membrane-units-for-gas-separation/borsig-biogas-conditioning.html
  7. Brunetti, A., Scura, F., Barbieri, G., & Drioli, E. (2010). Membrane technologies for CO2 separation. Journal of Membrane Science, 359, 115–125. DOI:  10.1016/j.memsci.2009.11.040.CrossRefGoogle Scholar
  8. Brunetti, A., Drioli, E., Lee, Y. M., & Barbieri, G. (2014). Engineering evaluation of CO2 separation by membrane gas separation system. Journal of Membrane Science, 454, 305–315. DOI:  10.1016/j.memsci.2013.12.037.CrossRefGoogle Scholar
  9. Corti, A., Fiaschi, D., & Lombardi, L. (2004). Carbon dioxide removal in power generation using membrane technology. Energy, 29, 2025–2043. DOI:  10.1016/j.energy.2004.03.011.CrossRefGoogle Scholar
  10. Deng, L. Y., & Hägg, M. B. (2010). Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 4, 638–646. DOI:  10.1016/j.ijggc.2009.12.013.CrossRefGoogle Scholar
  11. Dolejš, P., Poštulka, V., Sedláková, Z., Jandová, V., Vejražka, J., Esposito, E., Jansen, J. C., & Izák, P. (2014). Simultaneous hydrogen sulphide and carbon dioxide removal from biogas by water-swollen reverse osmosis membrane. Separation and Purification Technology, 131, 108–116. DOI:  10.1016/j.seppur.2014.04.041.CrossRefGoogle Scholar
  12. Energoklastr (2015). CLEARGAS: Mobile biogas cleaning unit. Retrieved January 2, 2015, from http://www.cleargas.cz/en.pdf
  13. Evonik Industries (2015). SEPURAN® for biogas upgrading. Retrieved January 2, 2015, from http://www.sepuran.de/product/sepuran/en/product-overview/Pages/default.aspx
  14. Gu, Y. Y., & Lodge, T. P. (2011). Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules, 44, 1732–1736, DOI:  10.1021/ma2001838.CrossRefGoogle Scholar
  15. Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., & Chmielewski, A. G. (2007). Aplication of polyimide membranes for biogas purification and enrichment. Journal of Hazardous Materials, 144, 698–702. DOI:  10.1016/j.jhazmat.2007.01.098.CrossRefGoogle Scholar
  16. Heilman, W., Tammela, V., Meyer, J. A., Stannet, V., & Szwarc, M. (1956). Permeability of polymer films to hydrogen sulfide gas. Industrial & Engeneering Chemistry, 48, 821–824. DOI:  10.1021/ie50556a046.CrossRefGoogle Scholar
  17. Hudiono, Y. C., Carlisle, T. K., LaFrate, A. L., Gin, D. L., & Noble, R. D. (2011). Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. Journal of Membrane Science, 370, 141–148. DOI:  10.1016/j.memsci.2011.01.012.CrossRefGoogle Scholar
  18. Husken, D., Visser, T., Wessling, M., & Gaymans, R. J. (2010). CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers. Journal of Membrane Science, 346, 194–201. DOI:  10.1016/j.memsci.2009.09.034.CrossRefGoogle Scholar
  19. Kárászová, M., Friess, K., Šípek, M., Jansen, J. C., & Izák, P. (2011). Biogas upgrading for the 21st century. In R. Litonjua, & I. Cvetkovski (Eds.), Biogas: Production, consumption and applications (pp. 91–116). New York, NY, USA: Nova Science Publishers.Google Scholar
  20. Kárászová, M., Vejražka, J., Veselý, V., Friess, K., Randová, A., Hejtmánek, V., Brabec, L., & Izák, P. (2012). A water-swollen thin film composite membrane for effective upgrading of raw biogas to methane. Separation and Purification Technology, 89, 212–216. DOI:  10.1016/j.seppur.2012.01.037.CrossRefGoogle Scholar
  21. Kárászová, M., Simcik, M., Friess, K., Randová, A., Jansen, J. C., Ruzicka, M. C., Sedláková, Z., & Izak, P. (2013). Comparison of theoretical and experimental mass transfer coefficients of gases in supported ionic liquid membranes. Separation and Purification Technology, 118, 255–263. DOI:  10.1016/j.seppur.2013.06.045.CrossRefGoogle Scholar
  22. Kárászová, M., Kačírková, M., Friess, K., & Izák, P. (2014). Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids: A review. Separation and Purification Technology, 132, 93–101. DOI:  10.1016/j.seppur.2014.05.008.CrossRefGoogle Scholar
  23. Kim, H. W., & Park, H. B. (2011). Gas diffusivity, solubility and permeability in polysulfone-poly(ethylene oxide) random copolymer membranes. Journal of Membrane Science, 372, 116–124. DOI:  10.1016/j.memsci.2011.01.053.CrossRefGoogle Scholar
  24. Krull, F. F., Fritzmann, C., & Melin, T. (2008). Liquid membranes for gas/vapor separations. Journal of Membrane Science, 325, 509–519. DOI:  10.1016/j.memsci.2008.09.018.CrossRefGoogle Scholar
  25. Kujawska, A., Kujawski, J., Bryjak, M., & Kujawski, W. (2015). ABE fermentation product recovery—A review. Renewable and Sustainable Energy Reviews, 48, 648–661. DOI:  10.1016/j.rser.2015.04.028.CrossRefGoogle Scholar
  26. Lems, R., Langerak, J., & Dirkse, E. H. M. (2014). Next generation biogas upgrading using highly selective gas separation membranes. Showcasing the Poundbury Project. Retrieved January 2014 from http://www.dirkse-milieutechniek.com/dmt/do/download/_/true/211689/Next_generation_biogas_upgrading.pdf
  27. Li, Y., & Chung, T. S. (2010). Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 35, 10560–10568. DOI:  10.1016/j.ijhydene.2010.07.124.CrossRefGoogle Scholar
  28. Lin, H., & Freeman, B. D. (2004). Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 239, 105–117. DOI:  10.1016/j.memsci.2003.08.031.CrossRefGoogle Scholar
  29. Makaruk, A., Miltner, M., & Harasek, M. (2010). Membrane biogas upgrading processes for the production of natural gas substitute. Separation and Purification Technology, 74, 83–92. DOI:  10:1016/j.seppur.2010.05.010.CrossRefGoogle Scholar
  30. Miltner, M., Makaruk, A., & Harasek, M. (2010). Inv estigation of the long-term performance of an industrial-scale biogas upgrading plant with grid supply applying gas permeation membranes. Chemical Engineering Transactions, 21, 1213–1218. DOI:  10.3303/cet1021203.Google Scholar
  31. Molino, A., Nanna, F., Ding, Y. Bikson, B., & Braccio, G. (2013a). Biomethane production by anaerobic digestion of organic waste. Fuel, 103, 1003–1009. DOI:  10.1016/j.fuel.2012.07.070.CrossRefGoogle Scholar
  32. Molino, A., Nanna, F., Migliori, M., Iovane, P., Ding, Y., & Bikson, B. (2013b). Experimental and simulation results for biomethane production using PEEK hollow fiber membrane. Fuel, 112, 489–493. DOI:  10.1016/j.fuel.2013.04.046.CrossRefGoogle Scholar
  33. Orme, C. J., & Stewart, F. F. (2005). Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes. Journal of Membrane Science, 253, 243–249. DOI:  10.1016/j.memsci.2004.12.034.CrossRefGoogle Scholar
  34. Ozturk, B., & Demirciyeva, F. (2013). Comparison of biogas upgrading performances of different mixed matrix membranes. Chemical Engineering Journal, 222, 209–217. DOI:  10.1016/j.cej.2013.02.062.CrossRefGoogle Scholar
  35. PermSelect (2015). Methane purification, CO2removal. Retrieved January 5, 2015, from http://www.permselect.com/Platform_Technology/NG_CO2_Removal
  36. Poloncarzova, M., Vejrazka, J., Vesely, V., & Izak, P. (2011). Effective purification of biogas by condensing-liquid membrane. Angewandte Chemie International Edition, 50, 669–671. DOI:  10.1002/anie.201004821.CrossRefGoogle Scholar
  37. Porter, J. (1970). US Patent No. 3534528. Washington, DC, USA: U.S. Patent and Trademark Office.Google Scholar
  38. Quechulpa-Pérez, P., Pérez-Robles, J. F., Pérez-de Brito, A. F., & Aviliés-Arellano, L. M. (2014). Hybrid membranes prepared by the sol-gel process and based on silica-polyvinyl acetate for methane enrichment from biogas. Journal of Membrane Science & Technology, 4, 128. DOI:  10.4172/2155-9589.1000128.Google Scholar
  39. Rasi, S., Veijanen, A., & Rintala, A. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32, 1375–1380. DOI:  10.1016/j.energy.2006.10.018.CrossRefGoogle Scholar
  40. Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques of transformation of biogas to biomethane. Biomass and Bioenergy, 35, 1633–1645. DOI:  10.1016/j.biombioe.2011.02.033.CrossRefGoogle Scholar
  41. Scovazzo, P. (2009). Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized ionic liquid membranes (SILMs) for the purpose of guiding future research. Journal of Membrane Science, 343, 199–211. DOI:  10.1016/j.memsci.2009.07.028.CrossRefGoogle Scholar
  42. Scholz, M, Melin, T., & Wessling, M. (2013a). Transforming biogas into biomethane using membrane technology. Renewable and Sustainable Energy Reviews, 17, 199–212. DOI:  10.1016/j.rser.2012.08.009.CrossRefGoogle Scholar
  43. Scholz, M., Frank, B., Stockmeier, F., Falss, S., & Wessling, M. (2013b). Techno-economic analysis of hybrid processes for biogas upgrading. Industrial & Engineering Chemistry Research, 52, 16929–16938. DOI:  10.1021/ie402660s.CrossRefGoogle Scholar
  44. Scholz, M., Alders, M., Lohaus, T., & Wessling, M. (2015). Structural optimization of membrane-based biogas upgrading processes. Journal of Membrane Science, 474, 1–10. DOI:  10.1016/j.memsci.2014.08.032.CrossRefGoogle Scholar
  45. Schweigkofler, M., & Niessner, R. (2001). Removal of siloxanes in biogas. Journal of Hazardous Materials, 83, 183–196. DOI:  10.1016/s0304-3894(00)00318-6.CrossRefGoogle Scholar
  46. Suzuki, H., Tanaka, K., Kita, H., Okamoto, K., Hoshino, H., Yoshinaga, T., & Kusuki, Y. (1998). Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 146, 31–37. DOI:  10.1016/s0376-7388(98)00081-7.CrossRefGoogle Scholar
  47. Tan, X. Y., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271, 59–68. DOI:  10.1016/j.memsci.2005.06.057.CrossRefGoogle Scholar
  48. Voss, B. A., Bara, J. E., Gin, D. L., & Noble, R. D. (2009). Physically gelled ionic liquids: Solid membrane materials with liquidlike CO2 gas transport. Chemistry of Materials, 21, 3027–3029. DOI:  10.1021/cm900726p.CrossRefGoogle Scholar
  49. Vu, D. Q., Koros, W. J., & Miller, S. J. (2002). High pressure CO2/CH4 separation using carbon molecular sieves hollow fiber membranes. Industrial & Engineering Chemistry Research, 41, 367–380. DOI:  10.1021/ie010119w.CrossRefGoogle Scholar
  50. Wellinger, A., & Lindberg, A. (1999). Biogas upgrading and utilization (IEA Bioenergy: Task 24: Energy from biological conversion of organic waste). Winterthur, Switzerland: Sailer Druck.Google Scholar
  51. Wind, J. D., Paul, D. R., & Koros, W. J. (2004). Natural gas permeation in polyimide membranes. Journal of Membrane Science, 228, 227–236. DOI:  DOI: 10.1016/j.memsci.2003.10.011.CrossRefGoogle Scholar
  52. Xie, Z. L., Duond, T., Hoang, M., Nguyen, C., & Bolto, B. (2009). Ammonia removal by sweep gas membrane distillation. Water Research, 43, 1693–1699. DOI:  10.1016/j.watres.2008.12.052.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Magda Kárászová
    • 1
  • Zuzana Sedláková
    • 1
  • Pavel Izák
    • 1
  1. 1.Institute of Chemical Process FundamentalsCzech Academy of SciencesPrague 6 - SuchdolCzech Republic

Personalised recommendations