Advertisement

Chemical Papers

, Volume 70, Issue 1, pp 43–52 | Cite as

Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements

  • Marco Bortoluzzi
  • Dario Battistel
  • Gabriele Albertin
  • Salvatore Daniele
  • Francesco Enrichi
  • Riccardo Rumonato
Original Paper

Abstract

1,10-Phenanthroline-5,6-dione (Phd) complexes of group 3 and lanthanide elements having formulae Ln(hfac)3(Phd) (Ln = Y, Eu, Yb; hfac = hexafluoroacetylacetonate) were synthesised and characterised. Complexes of d-block elements of the type [MCl(Phd)(p-cymene)]+ (M = Ru, Os) were also prepared. In all these species, coordination of the polydentate ligand occurs by the N-donor moieties, as indicated by DFT calculations. The novel compounds were tested, together with fac-ReBr(Phd)(CO)3, as precursors for the preparation of heterobimetallic d/f derivatives. The reaction of the rhenium complex with yttrium or lanthanide anhydrous triflate salts led to the formation of the complexes ReBr(CO)3(N,N′-Phd-O,O′)Ln(OTf)3(THF) (Ln = Y, Eu, Yb), where the trivalent ions interacted with the quinonoid moiety. The redox properties of the rhenium centre were strongly affected by the coordination of Ln(OTf)3, as observed by comparing the cyclic voltammetry measurements carried out on fac-ReBr(Phd)(CO)3 and on ReBr(CO)3(N,N′-Phd-O,O′)Y(OTf)3.

Keywords

1,10-phenanthroline-5,6-dione d-block elements lanthanides heterobimetallic complexes cyclic voltammetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2017_700010043_MOESM1_ESM.pdf (14 kb)
Supplementary material, approximately 14 KB.

References

  1. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). New York, NY, USA: Wiley.Google Scholar
  2. Bennett, M. A., Huang, T. N., Matheson, T. W., Smith, A. K., Ittel, S., & Nickerson, W. (1982). (η6-Hexamethylbenzene)ruthenium complexes. In J. P. Fackler (Ed.), Inorganic syntheses (Vol. 21, Chapter 16, pp. 74–78). Hoboken, NJ, USA: Wiley. DOI:  10.1002/9780470132524.ch16.CrossRefGoogle Scholar
  3. Bertolo, L., Tamburini, S., Vigato, P. A., Porzio, W., Macchi, G., & Meinardi, F. (2006). Tris(tropolonato)phenanthroline lanthanide(III) complexes as photochemical devices. European Journal of Inorganic Chemistry, 2006, 2370–2376. DOI:  10.1002/ejic.200501061.CrossRefGoogle Scholar
  4. Brechin, E. K., Calucci, L., Englert, U., Margheriti, L., Pampaloni, G., Pinzino, C., & Prescimone, A. (2008). 1,10-Phenanthroline-5,6-dione complexes of middle transition elements: Mono- and dinuclear derivatives. Inorganica Chimica Acta, 361, 2375–2384. DOI:  10.1016/j.ica.2007.12.011.CrossRefGoogle Scholar
  5. Bullock, J. P., Carter, E., Johnson, R., Kennedy, A. T., Key, S. E., Kraft, B. J., Saxon, D., & Underwood, P. (2008). Reactivity of electrochemically generated rhenium (II) tricarbonyl α-diimine complexes: A reinvestigation of the oxidation of luminescent Re(CO)3(α-diimine)Cl and related compounds. Inorganic Chemistry, 47, 7880–7887. DOI:  10.1021/ic800530n.CrossRefGoogle Scholar
  6. Bünzli, J. C. G., & Eliseeva, S. V. (2011). Basics of lanthanide photophysics. In P. Hänninen, & H. Härmä (Eds.), Lanthanide luminescence: Photophysical, analytical and biological aspects (Springer series on fluorescence, Vol. 7, pp. 1–45). Berlin, Germany: Springer. DOI:  10.1007/4243_2010_3.Google Scholar
  7. Cabeza, J. A., & Maitlis, P. M. (1985). Mononuclear η6-p-cymeneosmium(II) complexes and their reactions with Al2Me6 and other methylating reagents. Journal of the Chemical Society, Dalton Transactions, 1985, 573–578. DOI:  10.1039/dt9850000573.CrossRefGoogle Scholar
  8. Calderazzo, F., Marchetti, F., Pampaloni, G., & Passarelli, V. (1999). Co-ordination properties of 1,10-phenanthroline-5,6-dione towards group 4 and 5 metals in low and high oxidation states. Journal of the Chemical Society, Dalton Transactions, 1999, 4389–4396. DOI:  10.1039/a906016b.CrossRefGoogle Scholar
  9. Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models (2nd ed.). Chichester, UK: Wiley.Google Scholar
  10. Daniele, S., Baldo, M. A., Bragato, C., Denuault, G., & Abdelsalam, M. E. (1999). Steady-state voltammetry for hydroxide ion oxidation in aqueous solutions in the absence of and with varying concentrations of supporting electrolyte. Analytical Chemistry, 71, 811–818. DOI:  10.1021/ac9807619.CrossRefGoogle Scholar
  11. Daniele, S., & Bragato, C. (2014). From macroelectrodes to microelectrodes: Theory and electrode properties. In L. M. Moretto, & K. Kalcher (Eds.), Environmental analysis by electrochemical sensors and biosensors (Series: Nanostructure science and technology, Vol. 1, pp. 373–402). Heidelberg, Germany: Springer.Google Scholar
  12. Denisova, A. S., Degtyareva, M. B., Dem’yanchuk, E. M., & Simanova, A. A. (2005). Synthesis of bifunctional ligands based on azaheterocycles and fragments of 12-crown-4. Russian Journal of Organic Chemistry, 41, 1690–1693. DOI:  10.1007/s11178-006-0020-1.CrossRefGoogle Scholar
  13. Dolg, M., Stoll, H., Savin, A., & Preuss, H. (1989). Energy-adjusted pseudopotentials for the rare earth elements. Theoretica Chimica Acta, 75, 173–194. DOI:  10.1007/bf00528565.CrossRefGoogle Scholar
  14. Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (NIC series, Vol. 1, pp. 479–508). Jülich, Germany: John von Neumann Institute for Computing.Google Scholar
  15. Eckert, T. S., Bruice, T. C., Gainor, J. A., & Weinreb, S. M. (1982). Some electrochemical and chemical properties of methoxatin and analogous quinoquinones. Proceedings of the National Academy of Sciences of the USA, 79, 2533–2536.CrossRefGoogle Scholar
  16. Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. DOI:  10.1063/1.448975.CrossRefGoogle Scholar
  17. Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261. DOI:  10.1063/1.1677527.CrossRefGoogle Scholar
  18. Kobayashi, S., Sugiura, M., Kitagawa, H., & Lam, W. W. L. (2002). Rare-earth metal triflates in organic synthesis. Chemical Reviews, 102, 2227–2302. DOI:  10.1021/cr010289i.CrossRefGoogle Scholar
  19. Kropacheva, T. N., Kornev, V I., Loginov, D. A., Meshcheryakov, V. I., Mutseneck, E. V., Muratov, D. V., Perekalin, D. S., Shul’pina, L. S., & Kudinov, A. R. (2005). Synthesis and studies of spectroscopic and electrochemical properties of dinuclear ruthenium(II) and manganese(II) complexes. Russian Chemical Bulletin, International Edition, 54, 2354–2358. DOI:  10.1007/s11172-006-0122-5.CrossRefGoogle Scholar
  20. Kurz, P., Probst, B., Spingler, B., & Alberto, R. (2006). Ligand variations in [ReX(diimine)(CO)3] complexes: Effects on photocatalytic CO2 reduction. European Journal of Inorganic Chemistry, 2006, 2966–2974. DOI:  10.1002/ejic.200600166.CrossRefGoogle Scholar
  21. Lever, A. B. P. (1991). Electrochemical parametrization of rhenium redox couples. Inorganic Chemistry, 30, 1980–1985. DOI:  10.1021/ic00009a008.CrossRefGoogle Scholar
  22. Lin, C. Y., George, M. W., & Gill, P. M. W. (2004). EDF2: A density functional for predicting molecular vibrational frequencies. Australian Journal of Chemistry, 57, 365–370. DOI:  10.1071/ch03263.CrossRefGoogle Scholar
  23. Richardson, M. F., Wagner, W. F., & Sands, D. E. (1968). Rare-earth trishexafluoroacetylacetonates and related compounds. Journal of Inorganic and Nuclear Chemistry, 30, 1275–1289. DOI:  10.1016/0022-1902(68)80557-3.CrossRefGoogle Scholar
  24. Richter, M. M., & Bard, A. J. (1996). Electrogenerated chemiluminescence. 58. Ligand-sensitized electrogenerated chemiluminescence in europium labels. Analytical Chemistry, 68, 2641–2650. DOI:  10.1021/ac960211f.CrossRefGoogle Scholar
  25. Schmidt, S. P., Trogler, W. C., Basolo, F., Urbancic, M. A., & Shapley, J. R. (1990). Pentacarbonylrhenium halides. In R. J. Angelici (Ed.), Inorganic syntheses: Reagents for transition metal complex and organometallic syntheses (Vol. 28, Chapter 42, pp. 165–168). Hoboken, NJ, USA: Wiley. DOI:  10.1002/9780470132593.ch42.Google Scholar
  26. Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S., & Ward, M. D. (2003). Sensitized near-infrared emission from complexes of YbIII, NdIII and ErIII by energy-transfer from covalently attached PtII-based antenna units. Chemistry — A European Journal, 9, 5283–5291. DOI:  10.1002/chem.200305132.CrossRefGoogle Scholar
  27. Wuyts, L. F., & Van Der Kelen, G. P. (1977). Carbonyl spectra of L2XMn(CO)3 complexes. Inorganica Chimica Acta, 23, 19–22. DOI:  10.1016/s0020-1693(00)94735-2.CrossRefGoogle Scholar
  28. Zhang, X. F., Xu, C. J., & Wan, J. (2014). Mono- and dinuclear europium(III) complexes with thenoyltrifluoroacetone and 1,10-phenanthroline-5,6-dione. Monatshefte für Chemie, 145, 1913–1917. DOI:  10.1007/s00706-014-1282-x.CrossRefGoogle Scholar
  29. Zobi, F., Degonda, A., Schaub, M. C., & Bogdanova, A. Y. (2010). CO releasing properties and cytoprotective effect of cis-trans-[ReII(CO)2Br2L2]n complexes. Inorganic Chemistry, 49, 7313–7322. DOI:  10.1021/ic100458j.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Marco Bortoluzzi
    • 1
  • Dario Battistel
    • 2
  • Gabriele Albertin
    • 1
  • Salvatore Daniele
    • 1
  • Francesco Enrichi
    • 3
  • Riccardo Rumonato
    • 1
  1. 1.Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca’ Foscari VeneziaVeneziaItaly
  2. 2.Dipartimento di Scienze Ambientali, Informatica e StatisticaUniversità Ca’ Foscari VeneziaVeneziaItaly
  3. 3.Veneto NanotechLaboratorio NanofabMargheraItaly

Personalised recommendations