Skip to main content
Log in

Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

1,10-Phenanthroline-5,6-dione (Phd) complexes of group 3 and lanthanide elements having formulae Ln(hfac)3(Phd) (Ln = Y, Eu, Yb; hfac = hexafluoroacetylacetonate) were synthesised and characterised. Complexes of d-block elements of the type [MCl(Phd)(p-cymene)]+ (M = Ru, Os) were also prepared. In all these species, coordination of the polydentate ligand occurs by the N-donor moieties, as indicated by DFT calculations. The novel compounds were tested, together with fac-ReBr(Phd)(CO)3, as precursors for the preparation of heterobimetallic d/f derivatives. The reaction of the rhenium complex with yttrium or lanthanide anhydrous triflate salts led to the formation of the complexes ReBr(CO)3(N,N′-Phd-O,O′)Ln(OTf)3(THF) (Ln = Y, Eu, Yb), where the trivalent ions interacted with the quinonoid moiety. The redox properties of the rhenium centre were strongly affected by the coordination of Ln(OTf)3, as observed by comparing the cyclic voltammetry measurements carried out on fac-ReBr(Phd)(CO)3 and on ReBr(CO)3(N,N′-Phd-O,O′)Y(OTf)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Bennett, M. A., Huang, T. N., Matheson, T. W., Smith, A. K., Ittel, S., & Nickerson, W. (1982). (η6-Hexamethylbenzene)ruthenium complexes. In J. P. Fackler (Ed.), Inorganic syntheses (Vol. 21, Chapter 16, pp. 74–78). Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470132524.ch16.

    Chapter  Google Scholar 

  • Bertolo, L., Tamburini, S., Vigato, P. A., Porzio, W., Macchi, G., & Meinardi, F. (2006). Tris(tropolonato)phenanthroline lanthanide(III) complexes as photochemical devices. European Journal of Inorganic Chemistry, 2006, 2370–2376. DOI: 10.1002/ejic.200501061.

    Article  Google Scholar 

  • Brechin, E. K., Calucci, L., Englert, U., Margheriti, L., Pampaloni, G., Pinzino, C., & Prescimone, A. (2008). 1,10-Phenanthroline-5,6-dione complexes of middle transition elements: Mono- and dinuclear derivatives. Inorganica Chimica Acta, 361, 2375–2384. DOI: 10.1016/j.ica.2007.12.011.

    Article  CAS  Google Scholar 

  • Bullock, J. P., Carter, E., Johnson, R., Kennedy, A. T., Key, S. E., Kraft, B. J., Saxon, D., & Underwood, P. (2008). Reactivity of electrochemically generated rhenium (II) tricarbonyl α-diimine complexes: A reinvestigation of the oxidation of luminescent Re(CO)3(α-diimine)Cl and related compounds. Inorganic Chemistry, 47, 7880–7887. DOI: 10.1021/ic800530n.

    Article  CAS  Google Scholar 

  • Bünzli, J. C. G., & Eliseeva, S. V. (2011). Basics of lanthanide photophysics. In P. Hänninen, & H. Härmä (Eds.), Lanthanide luminescence: Photophysical, analytical and biological aspects (Springer series on fluorescence, Vol. 7, pp. 1–45). Berlin, Germany: Springer. DOI: 10.1007/4243_2010_3.

    Google Scholar 

  • Cabeza, J. A., & Maitlis, P. M. (1985). Mononuclear η6-p-cymeneosmium(II) complexes and their reactions with Al2Me6 and other methylating reagents. Journal of the Chemical Society, Dalton Transactions, 1985, 573–578. DOI: 10.1039/dt9850000573.

    Article  Google Scholar 

  • Calderazzo, F., Marchetti, F., Pampaloni, G., & Passarelli, V. (1999). Co-ordination properties of 1,10-phenanthroline-5,6-dione towards group 4 and 5 metals in low and high oxidation states. Journal of the Chemical Society, Dalton Transactions, 1999, 4389–4396. DOI: 10.1039/a906016b.

    Article  Google Scholar 

  • Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models (2nd ed.). Chichester, UK: Wiley.

    Google Scholar 

  • Daniele, S., Baldo, M. A., Bragato, C., Denuault, G., & Abdelsalam, M. E. (1999). Steady-state voltammetry for hydroxide ion oxidation in aqueous solutions in the absence of and with varying concentrations of supporting electrolyte. Analytical Chemistry, 71, 811–818. DOI: 10.1021/ac9807619.

    Article  CAS  Google Scholar 

  • Daniele, S., & Bragato, C. (2014). From macroelectrodes to microelectrodes: Theory and electrode properties. In L. M. Moretto, & K. Kalcher (Eds.), Environmental analysis by electrochemical sensors and biosensors (Series: Nanostructure science and technology, Vol. 1, pp. 373–402). Heidelberg, Germany: Springer.

    Google Scholar 

  • Denisova, A. S., Degtyareva, M. B., Dem’yanchuk, E. M., & Simanova, A. A. (2005). Synthesis of bifunctional ligands based on azaheterocycles and fragments of 12-crown-4. Russian Journal of Organic Chemistry, 41, 1690–1693. DOI: 10.1007/s11178-006-0020-1.

    Article  CAS  Google Scholar 

  • Dolg, M., Stoll, H., Savin, A., & Preuss, H. (1989). Energy-adjusted pseudopotentials for the rare earth elements. Theoretica Chimica Acta, 75, 173–194. DOI: 10.1007/bf00528565.

    Article  CAS  Google Scholar 

  • Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (NIC series, Vol. 1, pp. 479–508). Jülich, Germany: John von Neumann Institute for Computing.

    Google Scholar 

  • Eckert, T. S., Bruice, T. C., Gainor, J. A., & Weinreb, S. M. (1982). Some electrochemical and chemical properties of methoxatin and analogous quinoquinones. Proceedings of the National Academy of Sciences of the USA, 79, 2533–2536.

    Article  CAS  Google Scholar 

  • Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448975.

    Article  CAS  Google Scholar 

  • Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261. DOI: 10.1063/1.1677527.

    Article  CAS  Google Scholar 

  • Kobayashi, S., Sugiura, M., Kitagawa, H., & Lam, W. W. L. (2002). Rare-earth metal triflates in organic synthesis. Chemical Reviews, 102, 2227–2302. DOI: 10.1021/cr010289i.

    Article  CAS  Google Scholar 

  • Kropacheva, T. N., Kornev, V I., Loginov, D. A., Meshcheryakov, V. I., Mutseneck, E. V., Muratov, D. V., Perekalin, D. S., Shul’pina, L. S., & Kudinov, A. R. (2005). Synthesis and studies of spectroscopic and electrochemical properties of dinuclear ruthenium(II) and manganese(II) complexes. Russian Chemical Bulletin, International Edition, 54, 2354–2358. DOI: 10.1007/s11172-006-0122-5.

    Article  CAS  Google Scholar 

  • Kurz, P., Probst, B., Spingler, B., & Alberto, R. (2006). Ligand variations in [ReX(diimine)(CO)3] complexes: Effects on photocatalytic CO2 reduction. European Journal of Inorganic Chemistry, 2006, 2966–2974. DOI: 10.1002/ejic.200600166.

    Article  Google Scholar 

  • Lever, A. B. P. (1991). Electrochemical parametrization of rhenium redox couples. Inorganic Chemistry, 30, 1980–1985. DOI: 10.1021/ic00009a008.

    Article  CAS  Google Scholar 

  • Lin, C. Y., George, M. W., & Gill, P. M. W. (2004). EDF2: A density functional for predicting molecular vibrational frequencies. Australian Journal of Chemistry, 57, 365–370. DOI: 10.1071/ch03263.

    Article  CAS  Google Scholar 

  • Richardson, M. F., Wagner, W. F., & Sands, D. E. (1968). Rare-earth trishexafluoroacetylacetonates and related compounds. Journal of Inorganic and Nuclear Chemistry, 30, 1275–1289. DOI: 10.1016/0022-1902(68)80557-3.

    Article  CAS  Google Scholar 

  • Richter, M. M., & Bard, A. J. (1996). Electrogenerated chemiluminescence. 58. Ligand-sensitized electrogenerated chemiluminescence in europium labels. Analytical Chemistry, 68, 2641–2650. DOI: 10.1021/ac960211f.

    Article  CAS  Google Scholar 

  • Schmidt, S. P., Trogler, W. C., Basolo, F., Urbancic, M. A., & Shapley, J. R. (1990). Pentacarbonylrhenium halides. In R. J. Angelici (Ed.), Inorganic syntheses: Reagents for transition metal complex and organometallic syntheses (Vol. 28, Chapter 42, pp. 165–168). Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470132593.ch42.

    Google Scholar 

  • Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S., & Ward, M. D. (2003). Sensitized near-infrared emission from complexes of YbIII, NdIII and ErIII by energy-transfer from covalently attached PtII-based antenna units. Chemistry — A European Journal, 9, 5283–5291. DOI: 10.1002/chem.200305132.

    Article  CAS  Google Scholar 

  • Wuyts, L. F., & Van Der Kelen, G. P. (1977). Carbonyl spectra of L2XMn(CO)3 complexes. Inorganica Chimica Acta, 23, 19–22. DOI: 10.1016/s0020-1693(00)94735-2.

    Article  CAS  Google Scholar 

  • Zhang, X. F., Xu, C. J., & Wan, J. (2014). Mono- and dinuclear europium(III) complexes with thenoyltrifluoroacetone and 1,10-phenanthroline-5,6-dione. Monatshefte für Chemie, 145, 1913–1917. DOI: 10.1007/s00706-014-1282-x.

    Article  CAS  Google Scholar 

  • Zobi, F., Degonda, A., Schaub, M. C., & Bogdanova, A. Y. (2010). CO releasing properties and cytoprotective effect of cis-trans-[ReII(CO)2Br2L2]n complexes. Inorganic Chemistry, 49, 7313–7322. DOI: 10.1021/ic100458j.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Bortoluzzi or Dario Battistel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortoluzzi, M., Battistel, D., Albertin, G. et al. Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements. Chem. Pap. 70, 43–52 (2016). https://doi.org/10.1515/chempap-2015-0140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0140

Keywords

Navigation