Advertisement

Chemical Papers

, Volume 69, Issue 9, pp 1202–1210 | Cite as

Antioxidative properties of Sambucus nigra extracts

  • Dominika Topol’skáEmail author
  • Katarína Valachová
  • Peter Rapta
  • Stanislav Šilhár
  • Elena Panghyová
  • Anton Horváth
  • Ladislav Šoltés
Original Paper

Abstract

Potential protective effects of elderberry (Sambucus nigra) extracts against oxidative degradation of hyaluronan (HA) were detected in vitro. To induce free-radical-mediated HA degradation, Weissberger’s biogenic oxidative system, which mimics the situation of acute inflammation, was applied. Time- and dose-dependent changes of dynamic viscosity of the HA solutions in the presence and absence of two elderberry extracts produced in 2006 and 2012 were recorded by rotational viscometry (RV). Radical scavenging capacity of both extracts was investigated by the spectrocolorimetric ABTS [2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] assay and the “inverted” ABTS assay. Oxygen consumption of the system oxidizing HA either in the absence or presence of the elderberry extracts was determined. The results of RV revealed that an addition of the newer extract (2012) promoted the inhibition of HA degradation more markedly compared to the older extract (2006). The same effect of both extracts on ABTS·+ scavenging was observed. Inverted ABTS assay demonstrated that colorful substances were not responsible for the radical-scavenging activity. Results of oximetry demonstrated that the effect of the extract from 2006 was more significant than that of the extract from 2012.

Keywords

ABTS assay glycosaminoglycans oximetry rotational viscometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuja, P. M., Murkovic, M., & Pfannhauser, W. (1998). Antioxidant and prooxidant activities of elderberry (Sambucus nigra) extract in low-density lipoprotein oxidation. Journal of Agricultural and Food Chemistry, 46, 4091–4096. DOI:  10.1021/jf980296g.CrossRefGoogle Scholar
  2. Thorne Research (2005). Sambucus nigra (Elderberry). Alternative Medicine Review, 10, 51–55.Google Scholar
  3. Barak, V., Birkenfeld, S., Halperi, T., & Kalickman, I. (2002). The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Israel Medical Association Journal, 4 (Supplement), 919–922.Google Scholar
  4. Bratu, M. M., Doroftei, E., Negreanu-Pirjol, T., Hostina, C., & Porta, S. (2012). Determination of antioxidant activity and toxicity of Sambucus nigra fruit extract using alternative methods. Biotechnology, 50, 177–182.Google Scholar
  5. Cao, G., & Prior, R. L. (1999). Anthocyanins are detected in human plasma after oral administration of an elderberry extract. Clinical Chemistry, 45, 574–576.Google Scholar
  6. Fuleki, T., & Francis, F. J. (1968). Quantitative methods for antocyanins. Journal of Food Science, 33, 73–77. DOI:  10.1111/j.1365-2621.1968.tb00887.x.Google Scholar
  7. Hrabárová, E., Valachová, K., Rychlý, J., Rapta, P., Sasinková, V., Malíková, M., & Šoltés, L. (2009). High-molar-mass hyaluronan degradation by Weissberger’s system: Pro- and anti-oxidative effects of some thiol compounds. Polymer Degradation and Stability, 94, 1867–1875. DOI:  10.1016/j.polymdegradstab.2009.05.007.CrossRefGoogle Scholar
  8. Hrabárová, E., Valachová, K., Rapta, P., & Šoltés, L. (2010). An alternative standard for Trolox-equivalent antioxidant-capacity estimation based on thiol antioxidants. Comparative 2,2-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation. Chemistry & Biodiversity, 7, 2191–2200. DOI:  10.1002/cbdv.201000019.CrossRefGoogle Scholar
  9. Nussbaum, G., & Levine, W. Z. (2008). EP Patent No. WO 2008,142,619 A1. Geneva, Switzerland:World Intellectual Property Organization.Google Scholar
  10. Jabłońska-Ryś, E., Zalewska-Korona, M., & Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolic content in wild edible fruits. Journal of Fruit and Ornamental Plant Research, 17, 115–120.Google Scholar
  11. Milbury, P. E., Cao, G. H., Prior, R. L., & Blumberg, J. (2002). Bioavailablility of elderberry anthocyanins. Mechanisms of Ageing and Development, 123, 997–1006. DOI:  10.1016/s0047-6374(01)00383-9.CrossRefGoogle Scholar
  12. Murkovic, M., Mülleder, U., Adam, U., & Pfannhauser, W. (2001). Detection of anthocyanins from elderberry juice in human urine. Journal of the Science of Food and Agriculture, 81, 934–937. DOI:  10.1002/jsfa.910.CrossRefGoogle Scholar
  13. Mustafa, A., Sezai, E., & Murat, T. (2009). Physico-chemical characteristics of some wild grown European elderberry (Sambucus nigra L.) genotypes. Pharmacognosy Magazine, 5, 320–323. DOI:  10.4103/0973-1296.58153.CrossRefGoogle Scholar
  14. Rapta, P., Valachová, K., Gemeiner, P., & Šoltés, L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Effects of the presence of manganese(II) ions. Chemistry & Biodiversity, 6, 162–169. DOI:  10.1002/cbdv.200800075.CrossRefGoogle Scholar
  15. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237. DOI:  10.1016/s0891-5849(98)00315-3.CrossRefGoogle Scholar
  16. Shipp, J., & El-Sayed, M. A. A. (2010). Food applications and physiological effects of anthocyanins as functional food ingredients. The Open Food Science Journal, 4, 7–22. DOI:  10.2174/1874256401004010007.CrossRefGoogle Scholar
  17. Schmitzer, V., Veberic, R., Slatnar, A., & Stampar, F. (2010). Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. Journal of Agricultural and Food Chemistry, 58, 10143–10146. DOI:  10.1021/jf102083s.CrossRefGoogle Scholar
  18. Schrøder-Aasen, T., Molden, G., & Nilsen, O. G. (2012). In vitro inhibition of CYP3A4 by the multiherbal commercial product sambucus force and its main constituents Echinacea purpurea and Sambucus nigra. Phytotherapy Research, 26, 1606–1613. DOI:  10.1002/ptr.4619.CrossRefGoogle Scholar
  19. Šoltés, L., Brezová, V., Stankovská, M., Kogan, G., & Gemeiner, P. (2006). Degradation of high-molecular-weight hyaluronan by hydrogen peroxide in the presence of cupric ions. Carbohydrate Research, 341, 639–644. DOI:  10.1016/j.carres.2006.01.014.CrossRefGoogle Scholar
  20. Šoltés, L., Kogan, G., Stankovská, M., Mendichi, R., Rychlý, J., Schiller, J., & Gemeiner, P. (2007). Degradation of high-molar-mass hyaluronan and characterization of fragments. Biomacromolecules, 8, 2697–2705. DOI:  10.1021/bm070309b.CrossRefGoogle Scholar
  21. Stankovská, M., Hrabárová, E., Valachová, K., Molnárová, M., Gemeiner, P., & Šoltés, L. (2006). The degradative action of peroxynitrite on high-molecular-weight hyaluronan. Neuroendocrinology Letters, 27, 31–34.Google Scholar
  22. Stern, R., Kogan, G., Jedrzejas, M. J., & Šoltés, L. (2007). The many ways to cleave hyaluronan. Biotechnology Advances, 25, 537–557. DOI:  10.1016/j.biotechadv.2007.07.001.CrossRefGoogle Scholar
  23. Valachová, K., Vargová, A., Rapta, P., Hrabárová, E., Dráfi, F., Bauerová, K., Juránek, I., & Šoltés, L. (2011). Aurothiomalate as preventive and chain-breaking antioxidant in radical degradation of high-molar-mass hyaluronan. Chemistry & Biodiversity, 8, 1274–1283. DOI:  10.1002/cbdv.201000351.CrossRefGoogle Scholar
  24. Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114, 511–515. DOI:  10.1016/j.foodchem.2008.09.080.CrossRefGoogle Scholar
  25. Verner, Z., Čermáková, P., Škodová, I., Kováčová, B., Lukeš, J., & Horváth, A. (2014). Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Molecular and Biochemical Parasitology, 193, 55–65. DOI:  10.1016/j.molbiopara.2014.02.003.CrossRefGoogle Scholar
  26. Youdim, K. A., Martin, A., & Joseph, J. A. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biology and Medicine, 29, 51–60. DOI:  10.1016/s0891-5849(00)00329-4.CrossRefGoogle Scholar
  27. Žemlička, L., Fodran, P., Lukeš, V., Vagánek, A., Slováková, M., Staško, A., Dubaj, T., Liptaj, T., Karabín, M., Birošová, L., & Rapta, P. (2014). Physicochemical and biological properties of luteolin-7-O-β-d-glucoside (cynaroside) isolated from Anthriscus sylvestris (L.) Hoffm. Monatshefte für Chemie — Chemical Monthly, 145, 1307–1318. DOI:  10.1007/s00706-014-1228-3.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Dominika Topol’ská
    • 1
    Email author
  • Katarína Valachová
    • 1
  • Peter Rapta
    • 2
  • Stanislav Šilhár
    • 3
  • Elena Panghyová
    • 3
  • Anton Horváth
    • 4
  • Ladislav Šoltés
    • 1
  1. 1.Institute of Experimental Pharmacology and ToxicologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food TechnologySlovak Technical UniversityBratislavaSlovakia
  3. 3.Biocenter ModraFood Research InstituteModraSlovakia
  4. 4.Department of Biochemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations