Advertisement

Chemical Papers

, Volume 69, Issue 9, pp 1166–1175 | Cite as

Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid

  • Ming-Shi Feng
  • Jia-Duo LiuEmail author
  • Fang-Bai Zhang
  • Li-Hong HuangEmail author
Original Paper

Abstract

Olivine is abundant in the Earth’s upper mantle; it has applications in catalysts to enhance their stability in structures. The olivine-type catalysts were prepared by co-precipitation and hydrothermal synthesis and tested in the auto-thermal reforming (ATR) of acetic acid (AC), a model compound from bio-oil, for hydrogen production. In the meantime, the natural olivine impregnated with Ni was also tested. Characterisations of XRD, nitrogen physisorption, temperature-programmed reduction, and SEM-EDX were used to find the structure-reactivity relationship. The results indicate that the natural olivine produced a low H2 yield close to 0.17 mole of H2 per 1 mole of AC, while the olivine impregnated with Ni produced a H2 yield of from 2.19 mole to 2.73 mole of H2 per mole of AC. The olivine catalyst prepared by hydrothermal synthesis performed better in both activity and stability: the H2 yield achieved 3.06 mole of H2 per mole of AC and remained stable, which could be attributed to the higher surface area and stability with Ni inserted in the skeleton of olivine.

Keywords

olivine-supported nickel-based catalyst olivine prepared by hydrothermal synthesis auto-thermal reforming of acetic acid for hydrogen production acetic acid from bio-oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, L., Dong, C. Q., Yang, Y. P., Zhang, J. J., & He, L. (2011). The influence of Ni loading on coke formation in steam reforming of acetic acid. Renewable Energy, 36, 930–935. DOI:  10.1016/j.renene.2010.08.029.CrossRefGoogle Scholar
  2. Atong, D., Pechyen, C., Aht-Ong, D., & Sricharoenchaikul, V. (2011). Synthetic olivine supported nickel catalysts for gasification of glycerol. Applied Clay Science, 53, 244–253. DOI:  10.1016/j.clay.2011.01.030.CrossRefGoogle Scholar
  3. Bernardi, M. I. B., Araújo, V. D., Ribeiro, C., Avansi, W., Longo, E., de Albuquerque, N. A., Meneghetti, S. M. P., Almeida, R. M., & Fajardo, H. V. (2014). Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−xMnxO in cellulose conversion. Chemical Papers, 68, 1213–1218. DOI:  10.2478/s11696-013-0468-8.CrossRefGoogle Scholar
  4. Bimbela, F., Oliva, M., Ruiz, J., García, L., & Arauzo, J. (2013). Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts. International Journal of Hydrogen Energy, 38, 14476–14487. DOI:  10.1016/j.ijhydene.2013.09.038.CrossRefGoogle Scholar
  5. Chaubey, R., Sahu, S., James, O. O., & Maity, S. (2013). A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 23, 443–462. DOI:  10.1016/j.rser.2013.02.019.CrossRefGoogle Scholar
  6. Cheah, S., Gaston, K. R., Parent, Y. O., Jarvis, M. W., Vinzant, T. B., Smith, K. M., Thornburg, N. E., Nimlos, M. R., & Magrini-Bair, K. A. (2013). Nickel cerium olivine catalyst for catalytic gasification of biomass. Applied Catalysis B: Environmental, 134–135, 34–45. DOI:  10.1016/j.apcatb.2012.12.022.CrossRefGoogle Scholar
  7. Cheng, F., & Dupont, V. (2013). Nickel catalyst auto-reduction during steam reforming of bio-oil model compound acetic acid. International Journal of Hydrogen Energy, 38, 15160–15172. DOI:  10.1016/j.ijhydene.2013.09.111.CrossRefGoogle Scholar
  8. Courson, C., Udron, L., Świerczyński, D., Petit, C., & Kiennemann, A. (2002). Hydrogen production from biomass gasification on nickel catalysts: Tests for dry reforming of methane. Catalysis Today, 76, 75–86. DOI:  10.1016/s0920-5861(02)00202-x.CrossRefGoogle Scholar
  9. Cristiani, C., Dotelli, G., Mariani, M., Pelosato, R., & Zampori, L. (2013). Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation. Chemical Papers, 67, 526–531. DOI:  10.2478/s11696-013-0306-z.CrossRefGoogle Scholar
  10. Dachs, E., Geiger, C. A., von Seckendorff, V., & Grodzicki, M. (2007). A low-temperature calorimetric study of synthetic (forsterite + fayalite) (Mg2SiO4 +Fe2SiO4) solid solutions: An analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. The Journal of Chemical Thermodynamics, 39, 906–933. DOI:  10.1016/j.jct.2006.11.009.CrossRefGoogle Scholar
  11. Devi, L., Craje, M., Thune, P., Ptasinski, K. J., & Janssen, F. J. J. G. (2005). Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization. Applied Catalysis A: General, 294, 68–79. DOI:  10.1016/j.apcata.2005.07.044.CrossRefGoogle Scholar
  12. Hu, R. R., Yan, C. F., Zheng, X. X., Liu, H., & Zhou, Z. Y. (2013). Carbon deposition on Ni/ZrO2—CeO2 catalyst during steam reforming of acetic acid. International Journal of Hydrogen Energy, 38, 6033–6038. DOI:  10.1016/j.ijhydene.2012.12.141.CrossRefGoogle Scholar
  13. Huang, L. H., Zhang, F. B., Chen, R. R., & Hsu, A. T. (2012). Manganese-promoted nickel/alumina catalysts for hydrogen production via auto-thermal reforming of ethanol. International Journal of Hydrogen Energy, 37, 15908–15913. DOI:  10.1016/j.ijhydene.2012.08.050.CrossRefGoogle Scholar
  14. Huang, L. H., Liu, Q., Chen, R. R., Chu, D. R., & Hsu, A. T. (2010). Layered double hydroxide derived Co0.3Mg2.7Al1−xFexO4.5±δ catalysts for hydrogen production via autothermal reforming of bio-ethanol. Catalysis Communications, 12, 40–45. DOI:  10.1016/j.catcom.2010.05.019.CrossRefGoogle Scholar
  15. Huang, L. H., Liu, Q., Chen, R. R., & Hsu, A. T. (2011). Hydrogen production via auto-thermal reforming of bioethanol: The role of iron in layered double hydroxide-derived Ni0.35Mg2.65AlO4.5±δ catalysts. Applied Catalysis A: General, 393, 302–308. DOI:  10.1016/j.apcata.2010.12.010.CrossRefGoogle Scholar
  16. Hwang, C. S., & Wang, N. C. (2004). Preparation and characteristics of ferrite catalysts for reduction of CO2. Materials Chemistry and Physics, 88, 258–263. DOI:  10.1016/j.matchemphys.2004.02.028.CrossRefGoogle Scholar
  17. Kechagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A., & Vasalos, I. A. (2008). Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/olivine catalysts in a spouted bed reactor. Industrial & Engineering Chemistry Research, 48, 1400–1408. DOI:  10.1021/ie8013378.CrossRefGoogle Scholar
  18. Świerczyński, D., Libs, S., Courson, C., & Kiennemann, A. (2007). Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental, 74, 211–222. DOI:  10.1016/j.apcatb.2007.01.017.CrossRefGoogle Scholar
  19. Trane, R., Dahl, S., Skjøth-Rasmussen, M. S., & Jensen, A. D. (2012). Catalytic steam reforming of bio-oil. International Journal of Hydrogen Energy, 37, 6447–6472. DOI:  10.1016/j.ijhydene.2012.01.023.CrossRefGoogle Scholar
  20. Vagia, E. C., & Lemonidou, A. A. (2007). Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy, 32, 212–223. DOI:  10.1016/j.ijhydene.2006.08.021.CrossRefGoogle Scholar
  21. Virginie, M., Courson, C., Niznansky, D., Chaoui, N., & Kiennemann, A. (2010). Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Applied Catalysis B: Environmental, 101, 90–100. DOI:  10.1016/j.apcatb.2010.09.011.CrossRefGoogle Scholar
  22. Yang, X. Q., Xu, S. P., Xu, H. L., Liu, X. D., & Liu, C. H. (2010). Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catalysis Communications, 11, 383–386. DOI:  10.1016/j.catcom.2009.11.006.CrossRefGoogle Scholar
  23. Zhang, R. Q., Wang, Y. C., & Brown, R. C. (2007). Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energy Conversion and Management, 48, 68–77. DOI:  10.1016/j.enconman.2006.05.001.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExplorationChengdu University of TechnologyChengduChina
  2. 2.Institute of Sedimentary GeologyChengdu University of TechnologyChengduChina
  3. 3.Department of Chemical and Pharmaceutical EngineeringChengdu University of TechnologyChengduChina
  4. 4.Richard G. Lugar Center for Renewable EnergyIndiana University-Purdue UniversityIndianapolisUSA

Personalised recommendations