Chemical Papers

, Volume 69, Issue 9, pp 1262–1276 | Cite as

Molecular dynamic studies of amyloid-beta interactions with curcumin and Cu2+ ions

  • Stanislav KozmonEmail author
  • Igor Tvaroška
Original Paper


Amyloid-beta (Aβ) peptide readily forms aggregates that are associated with Alzheimer’s disease. Transition metals play a key role in this process. Recently, it has been shown that curcumin (CUA), a polyphenolic phytochemical, inhibits the aggregation of Aβ peptide. However, interactions of Aβ peptide with metal ions or CUA are not entirely clear. In this work, molecular dynamics (MD) simulations were carried out to clear the nature of interactions between the 42-residue Aβ peptide (Aβ-42) and Cu2+ ions and CUA. Altogether nine different models were investigated, and more than 2 µs of the simulation data were analyzed. The models represent the possible modes of arrangement between Aβ-42 and Cu2+ ions and CUA, respectively, and were used to shed light on the Aβ-42 conformational behavior in the presence of Cu2+ ions and CUA molecules. Obtained data clearly showed that the presence of a CUA molecule or a higher concentration of copper ions significantly affect the conformational behavior of Aβ-42. Calculations showed that the change of the His13 protonation state (Aβ(H13δ)-Cu2+, Aβ(H13δ)-Cu2+ -CUA models) leads to higher occurrence of the Asp23-Lys28 salt bridge. Analyzes of trajectories revealed that C-terminal β-sheet structures occurred significantly less frequently, and CUA promoted the stabilization of the α-helical structure. Further, calculations of the Aβ-42 complex with CUA and Cu2+ ions showed that CUA can chelate the Cu2+ ion and directly interact with Aβ, which may explain why CUA acts as an inhibitor of Aβ aggregation.


Alzheimers’s disease amyloid beta molecular dynamics curcumin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2017_690091262_MOESM1_ESM.docx (12 mb)
Supplementary material, approximately 12610 KB.


  1. Airoldi, C., Zona, C., Sironi, E., Colombo, L., Messa, M., Aurilia, D., Gregori, M., Masserini, M., Salmona, M., Nicotra, F., & La Ferla, B. (2011). Curcumin derivatives as new ligands of A beta peptides. Journal of Biotechnology, 156, 317–324. DOI:  10.1016/j.jbiotec.2011.07.021.CrossRefGoogle Scholar
  2. Ali-Torres, J., Maréchal, J. D., Rodríguez-Santiago, L., & Sodupe, M. (2011). Three dimensional models of Cu2+ — Aβ(1-16) complexes from computational approaches. Journal of the American Chemical Society, 133, 15008–15014. DOI:  10.1021/Ja203407v.CrossRefGoogle Scholar
  3. Allinger, N. L., Zhou, X. F., & Bergsma, J. (1994). Molecular mechanics parameters. Journal of Molecular Structure: THEOCHEM, 118, 69–83. DOI:  10.1016/s0166-1280(09)80008-0.CrossRefGoogle Scholar
  4. Atwood, C. S., Huang, X. D., Moir, R. D., Tanzi, R. E., & Bush, A. I. (1999). Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Metal Ions in Biological Systems, 36, 309–364.Google Scholar
  5. Ball, K. A., Phillips, A. H., Wemmer, D. E., & Head-Gordon, T. (2013). Differences in β-strand populations of monomeric Aβ40 and Aβ42. Biophysical Journal, 104, 2714–2724. DOI:  10.1016/j.bpj.2013.04.056.CrossRefGoogle Scholar
  6. Banerjee, R. (2014). Effect of curcumin on the metal ion induced fibrillization of Amyloid-β peptide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 798–800. DOI:  10.1016/j.saa.2013.09.064.CrossRefGoogle Scholar
  7. Barik, A., Mishra, B., Kunwar, A., Kadam, R. M., Shen, L., Dutta, S., Padhye, S., Setpati, A. K., Zhang, H. Y., & Priyadarsini, K. I. (2007). Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers. European Journal of Medicinal Chemistry, 42, 431–439. DOI:  10.1016/j.ejmech.2006.11.012.CrossRefGoogle Scholar
  8. Barnham, K. J., & Bush, A. I. (2008). Metals in Alzheimer’s and Parkinson’s diseases. Current Opinion in Chemical Biology, 12, 222–228. DOI:  10.1016/j.cbpa.2008.02.019.CrossRefGoogle Scholar
  9. Barrow, C. J., & Zagorski, M. G. (1991). Solution structures of β peptide and its constituent fragments: relation to amyloid deposition. Science, 253, 179–182. DOI:  10.1126/science.1853202.CrossRefGoogle Scholar
  10. Barrow, C. J., Yasuda, A., Kenny, P. T. M., & Zagorski, M. G. (1992). Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimers-disease: Analysis of circular-dichroism spectra. Journal of Molecular Biology, 225, 1075–1093. DOI:  10.1016/0022-2836(92)90106-t.CrossRefGoogle Scholar
  11. Becke, A. D. (1993). Density-functional thermochemistry. 3. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI:  10.1063/1.464913.CrossRefGoogle Scholar
  12. Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B., & Teplow, D. B. (2003). Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proceedings of the National Academy of Sciences of the United States of America, 100, 330–335. DOI:  10.1073/pnas.222681699.CrossRefGoogle Scholar
  13. Brewer, G. J. (2012). Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. BioFactors, 38, 107–113. DOI:  10.1002/biof.1005.CrossRefGoogle Scholar
  14. Bush, A. I. (2003). The metallobiology of Alzheimer’s disease. Trends in Neurosciences, 26, 207–214. DOI:  10.1016/s0166-2236(03)00067-5.CrossRefGoogle Scholar
  15. Bush, A. I. (2008). Drug development based on the metals hypothesis of Alzheimer’s disease. Journal of Alzheimers Disease, 15, 223–240.Google Scholar
  16. Case, D. A., Darden, T. A., Cheatham, T. E., III., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., Zhang, W., Merz, K. M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., & Kollman, P. A. (2008). AMBER 10 [computer software]. San Francisco, CA, USA: University of San Francisco.Google Scholar
  17. Coles, M., Bicknell, W., Watson, A. A., Fairlie, D. P., & Craik, D. J. (1998). Solution structure of amyloid β-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry, 37, 11064–11077. DOI:  10.1021/bi972979f.CrossRefGoogle Scholar
  18. Crouch, P. J., Harding, S. M. E., White, A. R., Camakaris, J., Bush, A. I., & Masters, C. L. (2008). Mechanisms of A beta mediated neurodegeneration in Alzheimer’s disease. International Journal of Biochemistry & Cell Biology, 40, 181–198. DOI:  10.1016/j.biocel.2007.07.013.CrossRefGoogle Scholar
  19. Ditchfie, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physics, 54, 724–728.CrossRefGoogle Scholar
  20. Faller, P. (2009). Copper and zinc binding to amyloid β:Coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chem Bio Chem, 10, 2837–2845. DOI:  10.1002/cbic.200900321.CrossRefGoogle Scholar
  21. Faller, P., & Hureau, C. (2009). Bioinorganic chemistry of copp er and zinc ions coordinated to amyloid-beta peptide. Dalton Transactions, 2009, 1080–1094. DOI:  10.1039/b813398k.CrossRefGoogle Scholar
  22. Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self-consistent molecular-orbital methods. XXIII. A polarization-type basis set for 2nd-row elements. The Journal of Chemical Physics, 77, 3654–3665. DOI:  10.1063/1.444267.CrossRefGoogle Scholar
  23. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09, Revision A.1. [computer software]. Wallington, CT, USA: Gaussian.Google Scholar
  24. Gobbi, M., Re, F., Canovi, M., Beeg, M., Gregori, M., Sesana, S., Sonnino, S., Brogioli, D., Musicanti, C., Gasco, P., Salmona, M., & Masserini, M. E. (2010). Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials, 31, 6519–6529. DOI:  10.1016/j.biomaterials.2010.04.044.CrossRefGoogle Scholar
  25. Good, T. A., & Murphy, R. M. (1995). Aggregation state-dependent binding of β-amyloid peptide to protein and lipid components of rat cortical homogenates. Biochemical and Biophysical Research Communications, 207, 209–215. DOI:  10.1006/bbrc.1995.1174.CrossRefGoogle Scholar
  26. Hardy, J., & Selkoe, D. J. (2002). Medicine — The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356. DOI:  10.1126/science.1072994.CrossRefGoogle Scholar
  27. Harihara, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular-orbital hydrogenation energies. Theoretica Chimica Acta, 28, 213–222. DOI:  10.1007/bf00533485.CrossRefGoogle Scholar
  28. Hehre, W. J., Ditchfie, R., & Pople, J. A. (1972). Self-consistent molecular-orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. The Journal of Chemical Physics, 56, 2257–2261. DOI:  10.1063/1.1677527.CrossRefGoogle Scholar
  29. Karr, J. W., Kaupp, L. J., & Szalai, V. A. (2004). Amyloid-β binds Cu2+ in a mononuclear metal ion binding site. Journal of the American Chemical Society, 126, 13534–13538. DOI:  10.1021/Ja0488028.CrossRefGoogle Scholar
  30. Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., & Spiteller, M. (2005). DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry, 102, 1069–1079. DOI:  10.1002/qua.20469.CrossRefGoogle Scholar
  31. Kulhánek, P., Fuxreiter, M., Štépán, J., Koča, J., Mones, L., Střelcová, Z., & Petřek, M. (2012). PMFLib — A toolkit for free energy calculations [computer software]. Brno, Czech Republic: Masaryk University.Google Scholar
  32. Le Droumaguet, B., Nicolas, J., Brambilla, D., Mura, S., Maksimenko, A., De Kimpe, L., Salvati, E., Zona, C., Airoldi, C., Canovi, M., Gobbi, M., Noiray, M., La Ferla, B., Nicotra, F., Scheper, W., Flores, O., Masserini, M., Andrieux, K., & Couvreur, P. (2012). Versatile and efficient targeting using a single nanoparticulate platform: Application to cancer and Alzheimer’s disease. ACS Nano, 6, 5866–5879. DOI:  10.1021/nn3004372.CrossRefGoogle Scholar
  33. Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Physical Review B, 37, 785–789. DOI:  10.1103/physrevb.37.785.CrossRefGoogle Scholar
  34. Lim, G. P., Chu, T., Yang, F. S., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370–8377.Google Scholar
  35. Lim, K. H., Collver, H. H., Le, Y. T. H., Nagchowdhuri, P., & Kenney, J. M. (2007). Characterizations of distinct amyloidogenic conformations of the Aβ (1-40) and (1-42) peptides. Biochemical and Biophysical Research Communications, 353, 443–449. DOI:  10.1016/j.bbrc.2006.12.043.CrossRefGoogle Scholar
  36. Liu, K. N., Lai, C. M., Lee, Y. T., Wang, S. N., Chen, R. P. Y., Jan, J. S., Liu, H. S., & Wang, S. S. S. (2012). Curcumin’s pre-incubation temperature affects its inhibitory potency toward amyloid fibrillation and fibril-induced cytotoxicity of lysozyme. Biochimica et Biophysica Acta (BBA) — General Subjects, 1820, 1774–1786. DOI:  10.1016/j.bbagen.2012.07.012.CrossRefGoogle Scholar
  37. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Vbeyreuther, K., Bush, A. I., & Masters, C. L. (1999). Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866. DOI:  10.1002/1531-8249(199912)46:6<860∷Aid-Ana8>3.0.Co;2-M.CrossRefGoogle Scholar
  38. Miehlich, B., Savin, A., Stoll, H., & Preuss, H. (1989). Results obtained with the correlation-energy density functionals of becke and Lee, Yang and Parr. Chemical Physics Letters, 157, 200–206. DOI:  10.1016/0009-2614(89)87234-3.CrossRefGoogle Scholar
  39. Miura, T., Hori-i, A., Mototani, H., & Takeuchi, H. (1999). Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry, 38, 11560–11569. DOI:  10.1021/bi9909389.CrossRefGoogle Scholar
  40. Mourtas, S., Canovi, M., Zona, C., Aurilia, D., Niarakis, A., La Ferla, B., Salmona, M., Nicotra, F., Gobbi, M., & Antimisiaris, S. G. (2011). Curcumin-decorated nanoliposomes with very high affinity for amyloid-β 1–42 peptide. Biomaterials, 32, 1635–1645. DOI:  10.1016/j.biomaterials.2010.10.027.CrossRefGoogle Scholar
  41. Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. Journal of Neuroscience Research, 75, 742–750. DOI:  10.1002/jnr.20025.CrossRefGoogle Scholar
  42. Parthasarathy, S., Long, F., Miller, Y., Xiao, Y. L., McElheny, D., Thurber, K., Ma, B. Y., Nussinov, R., & Ishii, Y. (2011). Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s β by solid-state NMR spectroscopy. Journal of the American Chemical Society, 133, 3390–3400. DOI:  10.1021/ja1072178.CrossRefGoogle Scholar
  43. Perrone, L., Mothes, E., Vignes, M., Mockel, A., Figueroa, C., Miquel, M. C., Maddelein, M. D., & Faller, P. (2010). Copper transfer from Cu-Aβ to human serum albumin inhibits aggregation, radical production and reduces Aβ toxicity. Chem-BioChem, 11, 110–118. DOI:  10.1002/cbic.200900474.Google Scholar
  44. Picciano, A. L., & Vaden, T. D. (2013). Complexation between Cu(II) and curcumin in the presence of two different segments of amyloid beta. Biophysical Chemistry, 184, 62–67. DOI:  10.1016/j.bpc.2013.09.004.CrossRefGoogle Scholar
  45. Porat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chemical Biology & Drug Design, 67, 27–37. DOI:  10.1111/j.1747-0285.2005.00318.x.CrossRefGoogle Scholar
  46. Raffa, D. F., & Rauk, A. (2007). Molecular dynamics study of the beta amyloid peptide of Alzheimer’s disease and its divalent copper complexes. The Journal of Physical Chemistry B, 111, 3789–3799. DOI:  10.1021/jp0689621.CrossRefGoogle Scholar
  47. Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6-31G* basis set for third-row atoms. Journal of Computational Chemistry, 22, 976–984. DOI:  10.1002/jcc.1058.CrossRefGoogle Scholar
  48. Re, F., Cambianica, I., Zona, C., Sesana, S., Gregori, M., Rigolio, R., La Ferla, B., Nicotra, F., Forloni, G., Cagnotto, A., Salmona, M., Masserini, M., & Sancini, G. (2011). Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine-Nanotechnology Biology and Medicine, 7, 551–559. DOI:  10.1016/j.nano.2011.05.004.CrossRefGoogle Scholar
  49. Reinke, A. A., & Gestwicki, J. E. (2007). Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: Influence of linker length and flexibility. Chemical Biology & Drug Design, 70, 206–215. DOI:  10.1111/j.1747-0285.2007.00557.x.CrossRefGoogle Scholar
  50. Roe, D. R., & Cheatham, T. E., III. (2013). PTRAJ and CPP-TRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9, 3084–3095. DOI:  10.1021/Ct400341p.CrossRefGoogle Scholar
  51. Saido, T. C., & Iwata, N. (2006). Metabolism of amyloid β peptide and pathogenesis of Alzheimer’s disease: Towards presymptomatic diagnosis, prevention and therapy. Neuroscience Research, 54, 235–253. DOI:  10.1016/j.neures.2005.12.015.CrossRefGoogle Scholar
  52. Serpell, L. C. (2000). Alzheimer’s amyloid fibrils: structure and assembly. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease, 1502, 16–30. DOI:  10.1016/s0925-4439(00)00029-6.CrossRefGoogle Scholar
  53. Shao, H. Y., Jao, S. C., Ma, K., & Zagorski, M. G. (1999). Solution structures of micelle-bound amyloid β-(1-40) and β-(1-42) peptides of Alzheimer’s disease. Journal of Molecular Biology, 285, 755–773. DOI:  10.1006/jmbi.1998.2348.CrossRefGoogle Scholar
  54. Singh, I., Sagare, A. P., Coma, M., Perlmutter, D., Gelein, R., Bell, R. D., Deane, R. J., Zhong, E., Parisi, M., Ciszewski, J., Kasper, R. T., & Deane, R. (2013). Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proceedings of the National Academy of Sciences of the United States of America, 110, 14771–14776. DOI:  10.1073/pnas.1302212110.CrossRefGoogle Scholar
  55. Soto, C., Castano, E. M., Frangione, B., & Inestrosa, N. C. (1995). The α-helical to β-strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. Journal of Biological Chemistry, 270, 3063–3067.CrossRefGoogle Scholar
  56. Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R. W., & Rosch, P. (1995). Structure of amyloid A4-(1-40)-peptide of Alzheimers-disease. European Journal of Biochemistry, 233, 293–298. DOI:  10.1111/j.1432-1033.1995.293_1.x.CrossRefGoogle Scholar
  57. Syme, C. D., Nadal, R. C., Rigby, S. E. J., & Viles, J. H. (2004). Copper binding to the amyloid-β (Aβ) peptide associated with Alzheimer’s disease — Folding, coordination geometry, pH dependence, stoichiometry, and affinity of A β-(1-28): Insights from a range of complementary spectroscopic techniques. Journal of Biological Chemistry, 279, 18169–18177. DOI:  10.1074/jbc.m313572200.CrossRefGoogle Scholar
  58. Taylor, M., Moore, S., Mourtas, S., Niarakis, A., Re, F., Zona, C., La Ferla, B., Nicotra, F., Masserini, M., Antimisiaris, S. G., Gregori, M., & Allsop, D. (2011). Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine-Nanotechnology Biology and Medicine, 7, 541–550. DOI:  10.1016/j.nano.2011.06.015.CrossRefGoogle Scholar
  59. Tomaselli, S., Esposito, V., Vangone, P., van Nuland, N. A. J., Bonvin, A. M. J. J., Guerrini, R., Tancredi, T., Temussi, A., & Picone, D. (2006). The α-to-β conformational transition of Alzheimer’s Aβ-(1-42) peptide in aqueous media is reversible: A step by step conformational analysis suggests the location of beta conformation seeding. ChemBioChem, 7, 257–267. DOI:  10.1002/cbic.200500223.CrossRefGoogle Scholar
  60. Wang, Y. Y., Li, L., Chen, T. T., Chen, W. Y., & Xu, Y. C. (2013). Microsecond molecular dynamics simulation of Aβ42 and identification of a novel dual inhibitor of Aβ42 aggregation and BACE1 activity. Acta Pharmacologica Sinica, 34, 1243–1250. DOI:  10.1038/aps.2013.55.CrossRefGoogle Scholar
  61. Wise, O., & Coskuner, O. (2014). New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue. Journal of Computational Chemistry, 35, 1278–1289. DOI:  10.1002/jcc.23622.CrossRefGoogle Scholar
  62. Xu, Y. C., Shen, J. J., Luo, X. M., Zhu, W. L., Chen, K. X., Ma, J. P., & Jiang, H. L. (2005). Conformational transition of amyloid beta-peptide. Proceedings of the National Academy of Sciences of the United States of America, 102, 5403–5407. DOI:  10.1073/pnas.0501218102.CrossRefGoogle Scholar
  63. Xu, L., Wang, X. J., Shan, S. S., & Wang, X. C. (2013). Characterization of the polymorphic states of copper(II)-bound Aβ(1-16) peptides by computational simulations. Journal of Computational Chemistry, 34, 2524–2536. DOI:  10.1002/jcc.23416.CrossRefGoogle Scholar
  64. Yan, Y. L., McCallum, S. A., & Wang, C. Y. (2008). M35 oxidation induces Aβ40-like structural and dynamical changes in Aβ42. Journal of the American Chemical Society, 130, 5394–5395. DOI:  10.1021/Ja711189c.CrossRefGoogle Scholar
  65. Yanagisawa, D., Shirai, N., Amatsubo, T., Taguchi, H., Hirao, K., Urushitani, M., Morikawa, S., Inubushi, T., Kato, M., Kato, F., Morino, K., Kimura, H., Nakano, I., Yoshida, C., Okada, T., Sano, M., Wada, Y., Wada, K., Yamamoto, A., & Tooyama, I. (2010). Relationship between the tautomeric structures of curcumin derivatives and their A beta-binding activities in the context of therapies for Alzheimer’s disease. Biomaterials, 31, 4179–4185. DOI:  10.1016/j.biomaterials.2010.01.142.CrossRefGoogle Scholar
  66. Yang, F. S., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, F. A., & Cole, G. M. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280, 5892–5901. DOI:  10.1074/jbc.m404751200.CrossRefGoogle Scholar
  67. Zhao, L. N., Chiu, S. W., Benoit, J., Chew, L. Y., & Mu, Y. G. (2012). The effect of curcumin on the stability of Aβ dimers. The Journal of Physical Chemistry B, 116, 7428–7435. DOI:  10.1021/jp3034209.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
  3. 3.Faculty of Science - National Centre for Biomolecular ResearchMasaryk UniversityBrnoCzech Republic
  4. 4.Department of Chemistry, Faculty of Natural SciencesConstantine The Philosopher UniversityNitraSlovakia

Personalised recommendations