Skip to main content
Log in

Resolution of ketoconazole enantiomers by high-performance liquid chromatography and inclusion complex formation between selector and enantiomerss

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The analytical resolution of ketoconazole (KTZ) enantiomers was performed by high-performance liquid chromatography with sulphobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive (chiral selector). Some important factors affecting the resolution of KTZ enantiomers were investigated. In addition, the molecular interaction between KTZ and SBE-β-CD was studied using the UV absorption spectrum and HPLC for an understanding of the resolution process. The results show that the type and concentration of the chiral mobile phase additive, the pH of the mobile phase and the volume fraction of methanol (ϕMeOH) in the mobile phase all have a clear influence on the resolution of KTZ enantiomers. Under optimal conditions, namely the use of 0.5 mmol L1 SBE-β-CD as the chiral mobile phase additive, pH of 4.0 and ϕMeOH in the mobile phase of 0.6, KTZ enantiomers are resolved with a resolution of 3.74. SBE-β-CD can bind to KTZ with a stability constant of 1157. The chromatographic method can provide the complexation stability constants of (+)-KTZ with SBE-β-CD (K(+)) and (−)-KTZ with SBE-β-CD (K(−)). The intrinsic enantioselectivity was calculated from the K(+) to (K(−)) ratio as 1.34.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakaki, R., & Welles, B. (2010). Ketoconazole enantiomer for the treatment of diabetes mellitus. Expert Opinion on Investigational Drugs, 19, 185–194. DOI: 10.1517/13543780903381411.

    Article  CAS  Google Scholar 

  • Bernal, J. L., del Nozal, M. J., Toribio, L., Montequi, M. I., & Nieto, E. M. (2000). Separation of ketoconazole enantiomers by chiral subcritical-fluid chromatography. Journal of Biochemical and Biophysical Methods, 43, 241–250. DOI: 10.1016/s0165-022x(00)00060-9.

    Article  CAS  Google Scholar 

  • Corradini, R., Dossena, A., Impellizzeri, G., Maccarrone, G., Marchelli, R., Rizzarelli, E., Sartor, G., & Vecchio, G. (1994). Chiral recognition and separation of amino acids by means of a copper(II) complex of histamine monofunctionalized β-cyclodextrin. Journal of the American Chemical Society, 116, 10267–10274. DOI: 10.1021/ja00101a050.

    Article  CAS  Google Scholar 

  • Castro-Puyana, M., García-Ruiz, C., Cifuentes, A., Crego, A. L., & Marina, M. L. (2006). Identification and quantitation of cis-ketoconazole impurity by capillary zone electrophoresis-mass spectrometry. Journal of Chromatography A, 1114, 170–177. DOI: 10.1016/j.chroma.2006.02.030.

    Article  CAS  Google Scholar 

  • Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033–1046. DOI: 10.1016/s0032-9592(03)00258-9.

    Article  Google Scholar 

  • Demirel, M., Yurtdaş, G., & Genç, L. (2011). Inclusion complexes of ketoconazole with beta-cyclodextrin: physicochem-ical characterization and in vitro dissolution behaviour of its vaginal suppositories. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70, 437–445. DOI: 10.1007/s10847-010-9922-1.

    Article  CAS  Google Scholar 

  • Fujimura, K., Ueda, T., Kitagawa, M., Takayanagi, H., & Ando, T. (1986). Reversed-phase retention behavior of aromatic compounds involving β-cyclodextrin inclusion complex formation in the mobile phase. Analytical Chemistry, 58, 2668–2674. DOI: 10.1021/ac00126a020.

    Article  CAS  Google Scholar 

  • Guan, J., Yang, J., Bi, Y., Shi, S., Yan, F., & Li, F. (2008). Determination of the enantiomeric impurity in S-(−)pantoprazole using high performance liquid chromatography with sulfobutylether-beta-cyclodextrin as chiral additive. Journal of Separation Science, 31, 288–293. DOI: 10.1002/jssc.200700369.

    Article  CAS  Google Scholar 

  • Healy, L. O., Murrihy, J. P., Tan, A., Cocker, D., McEnery, M., & Glennon, J. D. (2001). Enantiomeric separation of R, S-naproxen by conventional and nano-liquid chromatog-raphy with methyl-cyclodextrin as a mobile phase additive. Journal of Chromatography A, 924, 459–464. DOI: 10.1016/s0021-9673(01)01044-5.

    Article  CAS  Google Scholar 

  • Lerch, C., & Blaschke, G. (1998). Investigation of the stereoselective metabolism of praziquantel after incubation with rat liver microsomes by capillary electrophoresis and liquid chromatography-mass spectrometry. Journal of Chromatography B, 708, 267–275. DOI: 10.1016/s0378-4347(97)00638-5.

    Article  CAS  Google Scholar 

  • Liu, Y., Li, X. Q., Chen, Y., & Guan, X. D. (2004). Spectrophotometric study of selective binding behaviors of dye molecules by pyridine- and bipyridine-modified β-cyclodextrin derivatives with a functional tether in aqueous solution. The Journal of Physical Chemistry B, 108, 19541–19549. DOI: 10.1021/jp046363t.

    Article  CAS  Google Scholar 

  • Liu, J. J., Liu, C., Tang, K. W., & Zhang, P. L. (2014). Biphasic recognition chiral extraction — novel way of separating pan-toprazole enantiomers. Chemical Papers, 68, 599–607. DOI: 10.2478/s11696-013-0501-y.

    CAS  Google Scholar 

  • Luong, J. H. T., & Guo, Y. (1998). Mixed-mode separation of polycyclic aromatic hydrocarbons (PAHs) in electrokinetic chromatography. Electrophoresis, 19, 723–730. DOI: 10.1002/elps.1150190521.

    Article  CAS  Google Scholar 

  • Mskhiladze, A., Karchkhadze, M., Dadianidze, A., Fanali, S., Farkas, T., & Chankvetadze, B. (2013). Enantioseparation of chiral antimycotic drugs by HPLC with polysaccharide-based chiral columns and polar organic mobile phases with emphasis on enantiomer elution order. Chromatographia, 76, 1449–1458. DOI: 10.1007/s10337-013-2396-8.

    Article  CAS  Google Scholar 

  • Rabanes, H. R., & Quirino, J. P. (2013). Sweeping of alprenolol enantiomers with an organic solvent and sulfated β-cyclodextrin in capillary electrophoresis. Electrophoresis, 34, 1319–1326. DOI: 10.1002/elps.201200595.

    Article  CAS  Google Scholar 

  • Redenti, E., Ventura, P., Fronza, G., Selva, A., Rivara, S., Plazzi, P. V., & Mor, M. (1999). Experimental and theoretical analysis of the interaction of (±)-cis-ketoconazole with β-cyclodextrin in the presence of (+)-l-tartaric acid. Journal of Pharmaceutical Sciences, 88, 599–607. DOI: 10.1021/js980468o.

    Article  CAS  Google Scholar 

  • Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98, 1743–1754. DOI: 10.1021/cr970022c.

    Article  CAS  Google Scholar 

  • Tang, K., Zhang, P., Pan, C., & Li, H. (2011). Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β-cyclodextrin derivatives. AIChE Journal, 57, 3027–3036. DOI: 10.1002/aic.12513.

    Article  CAS  Google Scholar 

  • Tang, K., Zhang, H., & Liu, Y. (2013). Experimental and simulation on enantioselective extraction in centrifugal contactor separators. AIChE Journal, 59, 2594–2602. DOI: 10.1002/aic.14004.

    Article  CAS  Google Scholar 

  • Tao, Y., Dai, J., Kong, Y., & Sha, Y. (2014). Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(l-glutamic acid). Analytial Chemistry, 86, 2633–2639. DOI: 10.1021/ac403935s.

    Article  CAS  Google Scholar 

  • Taschwer, M., Seidl, Y., Mohr, S., & Schmid, M. G. (2014). Chiral separation of cathinone and amphetamine derivatives by HPLC/UV using sulfated β-cyclodextrin as chiral mobile phase additive. Chirality, 26, 411–418. DOI: 10.1002/chir.22341.

    Article  CAS  Google Scholar 

  • Tong, S., Yan, J., Guan, Y. X., & Lu, Y. (2011). Enantioseparation of phenylsuccinic acid by high speed counter-current chromatography using hydroxypropyl-β-cyclodextrin as chiral selector. Journal of Chromatography A, 1218, 5602–5608. DOI: 10.1016/j.chroma.2011.06.023.

    Article  CAS  Google Scholar 

  • Toribio, L., Bernal, J. L., del Nozal, M. J., Jiménez, J. J., & Nieto, E. M. (2001). Applications of the Chiralpak AD and Chiralcel OD chiral columns in the enantiomeric separation of several dioxolane compounds by supercritical fluid chromatography. Journal of Chromatography A, 921, 305–313. DOI: 10.1016/s0021-9673(01)00844-5.

    Article  CAS  Google Scholar 

  • Wang, S., Wang, Y., Zhou, J., Lu, Y., Tang, J., & Tang, W. (2014). Mono-6A-(4-methoxybutylamino)-6A-β-cyclodextrin as a chiral selector for enantiomeric separation. Journal of Separation Science, 37, 2056–2061. DOI: 10.1002/jssc.201400248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, BZ., He, K., Chen, XM. et al. Resolution of ketoconazole enantiomers by high-performance liquid chromatography and inclusion complex formation between selector and enantiomerss. Chem. Pap. 69, 1284–1290 (2015). https://doi.org/10.1515/chempap-2015-0133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0133

Keywords

Navigation