Chemical Papers

, Volume 69, Issue 9, pp 1156–1165 | Cite as

Carbonylation of cyclohexene to 2-cyclohexene-1-one by montmorillonite-supported Co(II) catalysts

  • Shu Gao
  • Rui-Ren TangEmail author
  • Yin Zhou
Original Paper


A novel environmentally-friendly catalytic system for the carbonylation of cyclohexene with molecular oxygen under conditions of mild temperature, and under an atmospheric oxygen pressure is presented. In this system, a series of readily-prepared cobalt complexes of 2-aminophenol and its derivatives immobilised onto montmorillonite were used as catalysts. The catalysts were characterised by FT-IR, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, diffuse reflectance ultraviolet visible spectra, scanning electron microscopic measurements, transmission electron microscopic measurements and the Brunauer-Emmett-Teller method. The effects of various reaction conditions such as catalyst dosage, temperature and time were optimised, obtaining an 88.7% conversion with 72.0% selectivity of 2-cyclohexene-1-one in 6 h. The results show that the catalytic activity of the cobalt complexes encapsulated in montmorillonite is higher than those of the free complexes. In addition, the heterogeneous catalysts were stable and can be recycled up to five times without any noticeable change in the catalytic activity.


cyclohexene allylic carbonylation molecular oxygen cobalt complexes montmorillonite immobilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bizaia, N., de Faria, E. H., Ricci, G. P., Calefi, P. S., Nassar, E. J., Castro, K. A., & Korili, S. A. (2009). Porphyrin-kaolinite as efficient catalyst for oxidation reactions. ACS Applied Materials & Interfaces, 1, 2667–2678. DOI:  10.1021/am900556b.CrossRefGoogle Scholar
  2. Cao, Y. H., Yu, H., Peng, F., & Wang, H. J. (2014). Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catalysis, 4, 1617–1625. DOI:  10.1021/cs500187q.CrossRefGoogle Scholar
  3. Chang, Y., Lv, Y. R., Lu, F., Zha, F., & Lei, Z. Q. (2010). Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiffbase complexes. Journal of Molecular Catalysis A: Chemical, 320, 56–61. DOI:  10.1016/j.molcata.2010.01.003.CrossRefGoogle Scholar
  4. Chary, K. V. R., Kishan, G., Kumar, C. P., & Sagar, G. V. (2003). Structure and catalytic properties of vanadium oxide supported on alumina. Applied Catalysis A: General, 246, 335–350. DOI:  10.1016/s0926-860x(03)00052-8.CrossRefGoogle Scholar
  5. Chidambaram, M., Venkatesan, C., & Singh, A. (2006). Organosilanesulfonic acid-functionalized Zr-TMS catalysts: synthesis, characterization and catalytic applications in condensation reactions. Applied Catalysis A: General, 310, 79–90. DOI:  10.1016/j.apcata.2006.05.024.CrossRefGoogle Scholar
  6. Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259–265. DOI:  10.1016/j.jcat.2012.02.015.CrossRefGoogle Scholar
  7. El-Ajaily, M. M., Maihub, A. A., & Filog, S. M. (2006). Synthesis and characterization of some Co(II), Ni(II) and Cu(II) mixed ligand chelates of 8-hydroxyquinoline, anthranilic acid and o-aminophenol. Asian Journal of Chemistry, 18, 2421–2426.Google Scholar
  8. Ghadiri, M., Farzaneh, F., Ghandi, M., & Alizadeh, M. (2005). Immobilized copper(II) complexes on montmorillonite and MCM-41 as selective catalysts for epoxidation of alkenes. Journal of Molecular Catalysis A: Chemical, 233, 127–131. DOI:  10.1016/j.molcata.2005.01.046.CrossRefGoogle Scholar
  9. Gupta, K. C., & Sutar, A. K. (2008a). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252, 1420–1450. DOI:  10.1016/j.ccr.2007.09.005.CrossRefGoogle Scholar
  10. Gupta, K. C., & Sutar, A. K. (2008b). Catalytic activities of polymer-supported metal complexes in oxidation of phenol and epoxidation of cyclohexene. Polymers for Advanced Technologies, 19, 186–200. DOI:  10.1002/pat.994.CrossRefGoogle Scholar
  11. Joseph, T., Halligudi, S. B., Satyanarayan, C., Sawant, D. P., & Gopinathan, S. (2001). Oxidation by molecular oxygen using zeolite encapsulated Co(II)saloph complexes. Journal of Molecular Catalysis A: Chemical, 168, 87–97. DOI:  10.1016/s1381-1169(00)00443-x.CrossRefGoogle Scholar
  12. Jurado-Gonzalez, M., Sullivan, A. C., & Wilson, J. R. H. (2003). Allylic and benzylic oxidation using cobalt(II) alkyl phosphonate modified silica. Tetrahedron Letters, 44, 4283–4286. DOI:  10.1016/s0040-4039(03)00833-5.CrossRefGoogle Scholar
  13. Kameyama, H., Narumi, F., Hattori, T., & Kameyama, H. (2006). Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. Journal of Molecular Catalysis A: Chemical, 258, 172–177. DOI:  10.1016/j.molcata.2006.05.022.CrossRefGoogle Scholar
  14. Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Farrokhpour, H., Enteshari, M., & Azarian, M. H. (2014a). Immobilization of cobalt(III) Schiff base complexes onto montmorillonite-K10: Synthesis, experimental and theoretical structural determination. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1582–1592. DOI:  10.1016/j.saa.2014.10.051.CrossRefGoogle Scholar
  15. Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Azarian, M. H., & Khafri, F. Z. (2014b). Novel nanohybrids of cobalt(III) Schiff base complexes and clay: synthesis and structural determinations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 422–428. DOI:  10.1016/j.saa.2014.02.089.CrossRefGoogle Scholar
  16. Li, Z. Y., Tang, R. R., & Liu, G. Y. (2013). Immobilized into montmorillonite Mn(II) complexes of novel pyridine Schiffbase ligands and their catalytic reactivity in epoxidation of cyclohexene with O2. Catalysis Letters, 143, 592–599. DOI:  10.1007/s10562-013-1002-x.CrossRefGoogle Scholar
  17. Liu, L., Wang, L., & Jia, D. Z. (2008). Preparation of cobalt and nickel complexes of 8-hydroxyquinoline with nanobelt structureviaone-step, low-heating, solid-state reactions. Journal of Coordination Chemistry, 61, 1019–1026. DOI:  10.1080/00958970701477503.CrossRefGoogle Scholar
  18. Liu, G. Y., Tang, R. R., & Wang, Z. (2014). Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catalysis Letters, 144, 717–722. DOI:  10.1007/s10562-014-1200-1.CrossRefGoogle Scholar
  19. Lu, Y. D., Nguyen, P. L., Lévaray, N., & Lebel, H. (2013). Palladium-catalyzed Saegusa-Ito oxidation: synthesis of α, β-unsaturated carbonyl compounds from trimethylsilyl enol ethers. Journal of Organic Chemistry, 78, 776–779. DOI:  10.1021/jo302465v.CrossRefGoogle Scholar
  20. Mao, J. Y., Li, N., Li, H. R., & Hu, X. B. (2006). Novel Schiff base complexes as catalysts in aerobic selective oxidation of β-isophorone. Journal of Molecular Catalysis A: Chemical, 258, 178–184. DOI:  10.1016/j.molcata.2006.05.051.CrossRefGoogle Scholar
  21. Masui, Y., Wang, J. C., Teramura, K., Kogure, T., Tanaka, T., & Onaka, M. (2014). Unique structural characteristics of tin hydroxide nanoparticles-embedded montmorillonite (Sn-Mont) demonstrating efficient acid catalysis for various organic reactions. Microporous and Mesoporous Materials, 198, 129–138. DOI:  10.1016/j.micromeso.2014.07.024.CrossRefGoogle Scholar
  22. Maurya, R. C., Sharma, P., & Sutradhar, D. (2003). Synthesis, magnetic, and spectral studies of some mixed-ligand complexes of copper(II) involving diphenic acid and pyridine or aniline derivatives. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33, 669–682. DOI:  10.1081/sim120020331.CrossRefGoogle Scholar
  23. Motahari, F., Mozdianfard, M. R., Soofivand, F., & Salavati-Niasari, M. (2014). NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Advances, 2014, 27654–27660. DOI:  10.1039/c4ra02697g.CrossRefGoogle Scholar
  24. Nammalwar, B., Fortenberry, C., Bunce, R. A., Lageshetty, S. K., & Ausman, K. D. (2013). Efficient oxidation of arylmethylene compounds using nano-MnO2. Tetrahedron Letters, 54, 2010–2013. DOI:  10.1016/j.tetlet.2013.02.009.CrossRefGoogle Scholar
  25. Parida, K., Varadwaj, G. B. B., Sahu, S., & Sahoo, P. C. (2011). Schiff base Pt(II) complex intercalated montmorillonite: a robust catalyst for hydrogenation of aromatic nitro compounds at room temperature. Industrial & Engineering Chemistry Research, 50, 7849–7856. DOI:  10.1021/ie200128w.CrossRefGoogle Scholar
  26. Sabet, M., Salavati-Niasari, M., & Amiri, O. (2014). Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochimica Acta, 117, 504–520. DOI:  10.1016/j.electacta.2013.11.176.CrossRefGoogle Scholar
  27. Sakthivel, A., & Selvam, P. (2002). Mesoporous (Cr)MCM-41: a mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane. Journal of Catalysis, 211, 134–143. DOI:  10.1006/jcat.2002.3711.CrossRefGoogle Scholar
  28. Salavati-Niasari, M., & Amiri, A. (2005). Synthesis and characterization of alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) complexes of bis(salicylaldiminato)hydrazone as catalysts for oxidation of cyclohexene with tert-buthylhydroperoxide. Applied Catalysis A: General, 290, 46–53. DOI:  10.1016/j.apcata.2005.05.009.CrossRefGoogle Scholar
  29. Salavati-Niasari, M. (2007). Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen over host (montmorillonite-K10)/guest (nickel(II) complexes of 12- and 13-membered diaza dioxa Schiff-base macrocyclic ligand) nanocatalyst (HGN). Journal of Molecular Catalysis A: Chemical, 263, 247–252. DOI:  10.1016/j.molcata.2006.09.007.CrossRefGoogle Scholar
  30. Salavati-Niasari, M., Zamani, E., Ganjali, M. R., & Norouzi, P. (2007a). Synthesis, characterization and liquid phase oxidation of cyclohexanol using tert-butylhydroperoxide over host (zeolite-Y)/guest (copper(II) complexes of 12- and 13-membered diaza dioxa Schiff-base macrocyclic ligand) nanocomposite materials (HGNM). Journal of Molecular Catalysis A: Chemical, 261, 196–201. DOI:  10.1016/j.molcata.2006.05.053.CrossRefGoogle Scholar
  31. Salavati-Niasari, M., Shaterian, M., Ganjali, M. R., & Norouzi, P. (2007b). Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N,N′-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM). Journal of Molecular Catalysis A: Chemical, 261, 147–155. DOI:  10.1016/j.molcata.2006.07.048.CrossRefGoogle Scholar
  32. Schiavon, M. A., Iamamoto, Y., Nascimento, O. R., & das Dorres Assis, M. (2001). Catalytic activity of nitro- and carboxy-substituted iron porphyrins in hydrocarbon oxidation: Homogeneous solution and supported systems. Journal of Molecular Catalysis A: Chemical, 174, 213–222. DOI:  10.1016/s1381-1169(01)00176-5.CrossRefGoogle Scholar
  33. Sehlotho, N., & Nyokong, T. (2004). Catalytic activity of iron and cobalt phthalocyanine complexes towards the oxidation of cyclohexene using tert-butylhydroperoxide and chloroperoxybenzoic acid. Journal of Molecular Catalysis A: Chemical, 209, 51–57. DOI:  10.1016/j.molcata.2003.08.014.CrossRefGoogle Scholar
  34. Sorokin, A. B. (2013). Phthalocyanine metal complexes in catalysis. Chemical Reviews, 113, 8152–8191. DOI:  10.1021/cr4000072.CrossRefGoogle Scholar
  35. Titinchi, S. J. J., & Abbo, H. S. (2013). Salicylaldiminato chromium complex supported on chemically modified silica as highly active catalysts for the oxidation of cyclohexene. Catalysis Today, 204, 114–124. DOI:  10.1016/j.cattod.2012.08.040.CrossRefGoogle Scholar
  36. Tong, J. H., Zhang, Y., Li, Z., & Xia, C. G. (2006). Highly effective catalysts of natural polymer supported salophen Mn(III) complexes for aerobic oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 249, 47–52. DOI:  10.1016/j.molcata.2005.12.031.CrossRefGoogle Scholar
  37. Varadwaj, G. B. B., Sahu, S., & Parida, K. (2011). La complex@Fe—PILM offering resilient option for efficient and green processing toward epoxidation of cyclohexene. Industrial & Engineering Chemistry Research, 50, 8973–8982. DOI:  10.1021/ie2002445.CrossRefGoogle Scholar
  38. Xu, L., Wu, W. X., Ding, J., Feng, S., Xing, X. W., Deng, M. Q., & Zhou, X. (2012). A pyridyl carboxamide molecule selectively stabilizes DNA G-quadruplex and regulates duplexquadruplex competition. RSC Advances, 2012, 894–899. DOI:  10.1039/c1ra00851j.CrossRefGoogle Scholar
  39. Yang, L., Wu, Z. Q., Liang, L., & Zhou, X. G. (2009a). Synthesis, crystal structures and catalytic abilities of new macrocyclic bis-pyridineamido MnIII and FeIII complexes. Journal of Organometallic Chemistry, 694, 2421–2426. DOI:  10.1016/j.jorganchem.2009.03.019.CrossRefGoogle Scholar
  40. Yang, X. M., Zhou, L. P., Chen, Y., Chen, C. L., Su, Y. L., Miao, H., & Xu, J. (2009b). A promotion effect of alkaline-earth chloride on N-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons. Catalysis Communications, 11, 171–174. DOI:  10.1016/j.catcom.2009.09.019.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityHunanChina

Personalised recommendations