Chemical Papers

, Volume 69, Issue 9, pp 1219–1230 | Cite as

Effect of process parameters on the concentration, current efficiency and energy consumption of electro-generated silver(II)

  • Shahrnaz Mokhtari
  • Fereidoon MohammadiEmail author
  • Mehdi Nekoomanesh
Original Paper


Electro-membrane generation of Ag(II) in nitric acid was experimentally explored in a three-electrode laboratory cell with respect to various operating parameters. DSA-O2, titanium plate and saturated Ag/AgCl were employed as the anode, cathode and reference electrode, respectively. The considered process parameters included anolyte temperature and Ag(I) initial concentration, electrolysis time, current density and supporting electrolyte concentration. Parameter effect on the Ag(II) concentration, current density and energy consumption were determined by the Taguchi and ANOVA methods for test design and data analysis, respectively. The results revealed that current density, AgNO3 concentration and temperature had noticeable effect on the generation of Ag(II). On the other hand, AgNO3 concentration and current density showed the most dominant effect on the Ag(II) current efficiency: 48.5% and 30.3%, respectively. AgNO3 concentration and current density were also found to have the highest effect on the energy consumption: 72.4% and 15.9%, respectively. Validity of the Taguchi method was also assessed by collecting the actual data.


mediated electrochemical oxidation silver(II) Taguchi method membrane reactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balazs, G. B., Chiba, Z., Hsu, P., Lewis, P. R., Murguia, L., & Adamson, M. (1997). Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system. In Proceedings of the 6. International Conference on Radioactive Waste Management and Environmental Remediation, ICEM’ 97, October 12–16, 1997. Singapore, Singapore: ICEM. DOI:  10.2172/611759.Google Scholar
  2. Balazs, G. B., & Lewis, P. R. (1999). U.S. Patent No. 5,919,350. Washington, D.C.: U.S. Patent and Trademark Office.Google Scholar
  3. Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods: Fundamentals and applications. New York, NY, USA: Wiley.Google Scholar
  4. Bringmann, J., Ebert, K., Galla, U., & Schmieder, H. (1995). Electrochemical mediators for total oxidation of chlorinated hydrocarbons: Formation kinetics of Ag(II), Co(III) and Ce(IV). Journal of Applied Electrochemistry, 25, 846–851. DOI:  10.1007/bf00772203.CrossRefGoogle Scholar
  5. Carson, R. W., & Bremer, B. W. (2004). W.O. Patent No. 2,004,012,206. Geneva, Switzerland: World Intellectual Property Organization.Google Scholar
  6. Chandrasekara Pillai, K., Chung, S. J., & Moon, I. S. (2008). Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process. Chemosphere, 73, 1505–1511. DOI:  10.1016/j.chemosphere.2008.07.047.CrossRefGoogle Scholar
  7. Chandrasekara Pillai, K., Matheswaran, M., Chung S. J., & Moon, I. S. (2009). Studies on promising cell performance with H2SO4 as the catholyte for electrogeneration of Ag2+ from Ag+ in HNO3 anolyte in mediated electrochemical oxidation process. Journal of Applied Electrochemistry, 39, 23–30. DOI:  10.1007/s10800-008-9633-0.CrossRefGoogle Scholar
  8. Chiba, Z. (1993). Mediated electrochemical oxidation of mixed wastes. In Second International Mixed Waste Symposium, August 17–20, 1993. Baltimore, Maryland, USA: American Society of Mechanical Engineers Mixed Waste Committee.Google Scholar
  9. Chung, S. J., Chandrasekara Pillai, K., & Moon, I. S. (2009). A sustainable environmentally friendly NOx removal process using Ag(II)/Ag(I)-mediated electrochemical oxidation. Separation and Purification Technology, 65, 156–163. DOI:  10.1016/j.seppur.2008.10.030.CrossRefGoogle Scholar
  10. Huang, K. L., Chen, T. S., & Yeh, K. J. C. (2009). Regeneration of Ce(IV) in simulated spent Cr-etching solutions using an undivided cell. Journal of Hazardous Materials, 171, 755–760. DOI:  10.1016/j.jhazmat.2009.06.061.CrossRefGoogle Scholar
  11. Jalali, A. A., Mohammadi, F., & Ashrafizadeh, S. N. (2009). Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell. Desalination, 237, 126–139. DOI:  10.1016/j.desal.2007.11.056.CrossRefGoogle Scholar
  12. Jones, C., Del Campo, J., Nevins, P., & Legg, S. (2002). Decontamination/destruction technology demonstration for organics in transuranic waste. Herndon, VA, US: AEA Technology Engineering Services. DE-BC26-01-NT 41201. DOI:  10.2172/816603.CrossRefGoogle Scholar
  13. Karimi, F., Ashrafizadeh, S. N., & Mohammadi, F. (2012). Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsiontype catholyte. Chemical Engineering Journal, 183, 402–407. DOI:  10.1016/j.cej.2011.12.031.CrossRefGoogle Scholar
  14. Kariyajjanavar, P., Narayana, J., Nayaka, Y. A., & Umanaik, M. (2010). Electrochemical degradation and cyclic voltammetric studies of textile reactive azo dye cibacron navy WB. Portugaliae Electrochimica Acta, 28, 265–277. DOI:  10.4152/pea.201004265.CrossRefGoogle Scholar
  15. Lehmani, A., Turq, P., & Simonin, J. P. (1996). Oxidation kinetics of water and organic compounds by silver(II) using a potentiometric method. Journal of the Electrochemical Society, 143, 1860–1866. DOI:  10.1149/1.1836915.CrossRefGoogle Scholar
  16. Leung, P. K., Ponce de León, C., Low, C. T. J., & Walsh, F. C. (2011). Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery. Electrochimica Acta, 56, 2145–2153. DOI:  10.1016/j.electacta.2010.12.038.CrossRefGoogle Scholar
  17. Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews, 35, 1324–1340. DOI:  10.1039/b517632h.CrossRefGoogle Scholar
  18. Matheswaran, M., Balaji, S., Chung, S. J., & Moon, I. S. (2007). Silver-mediated electrochemical oxidation: Production of silver(II) in nitric acid medium and in situ destruction of phenol in semi-batch process. Journal of Industrial and Engineering Chemistry, 13, 231–236.Google Scholar
  19. Matheswaran, M., Balaji, S., Chung, S. J., & Moon, I. S. (2008). Mediated electrochemical oxidation of phenol in continuous feeding mode using Ag(II) and Ce (IV) mediator ions in nitric acid: A comparative study. Chemical Engineering Journal, 144, 28–34. DOI:  10.1016/j.cej.2008.01.005.CrossRefGoogle Scholar
  20. Mohammadi, T., Moheb, A., Sadrzadeh, M., & Razmi, A. (2004). Separation of copper ions by electrodialysis using Taguchi experimental design. Desalination, 169, 21–31. DOI:  10.1016/j.desal.2004.08.004.CrossRefGoogle Scholar
  21. Mohammadi, F., Ashrafizadeh, S. N., & Sattari, A. (2009). Aqueous HCl electrolysis utilizing an oxygen reducing cathode. Chemical Engineering Journal, 155, 757–762. DOI:  10.1016/j.cej.2009.08.030.CrossRefGoogle Scholar
  22. Mokhtari, S., Mohammadi, F., & Nekoomanesh, M. (2013). Mediated electrochemical degradation of polystyrene by silver(II): Optimization and kinetic studies. International Journal of ChemTech Research, 5, 2656–2671.Google Scholar
  23. Muthuraman, G., Chung, S. J., & Moon, I. S. (2011). The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(II) active catalyst. Journal of Hazardous Materials, 193, 257–263. DOI:  10.1016/j.jhazmat.2011.07.054.CrossRefGoogle Scholar
  24. Muthuraman, G., & Moon, I. S. (2012). A review on an electrochemically assisted-scrubbing process for environmental harmful pollutant’s destruction. Journal of Industrial and Engineering Chemistry, 18, 1540–1550. DOI:  10.1016/j.jiec.2012.03.021.CrossRefGoogle Scholar
  25. Muthuraman, G., Chung, S. J., & Moon, I. S. (2012). Simple technical approach for perpetual use of electrogenerated Ag(II) at semipilot scale: Removal of NO and SO2 as a model system. Industrial & Engineering Chemistry Research, 51, 2697–2703. DOI:  10.1021/ie2015813.CrossRefGoogle Scholar
  26. Noyes, A. A., & Kossiakoff, A. (1935). Argentic salts in acid solution. III. Oxidation potential of argentous-argentic salts in nitric acid solution. Journal of the American Chemical Society, 57, 1238–1242. DOI:  10.1021/ja01310a020.CrossRefGoogle Scholar
  27. Otto, K., & Wood, K. (2001). Product design: Techniques in reverse engineering and new product development. Upper Saddle River, NJ, USA: Prentice Hall.Google Scholar
  28. Panizza, M., Duo, I., Michaud, P. A., Cerisola, G., & Comnellis, C. (2000). Electrochemical generation of silver(II) at boron-doped diamond electrodes. Electrochemical and Solid-State Letters, 3, 550–551. DOI:  10.1149/1.1391205.CrossRefGoogle Scholar
  29. Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 109, 6541–6569. DOI:  10.1021/cr9001319.CrossRefGoogle Scholar
  30. Prabhakaran, D., Kannadasan, T., & Ahmed Basha, C. (2009). Treatability of resin effluents by electrochemical oxidation using batch recirculation reactor. International Journal of Environmental Science & Technology, 6, 491–498. DOI:  10.1007/bf03326088.CrossRefGoogle Scholar
  31. Raju, T., Chung, S. J., & Moon, I. S. (2009). Electrochemical recovery of silver from waste aqueous Ag(I)/Ag(II) redox mediator solution used in mediated electro oxidation process. Korean Journal of Chemical Engineering, 26, 1053–1057. DOI:  10.1007/s11814-009-0175-x.CrossRefGoogle Scholar
  32. Sequeira, C. A. C., Santos, D. M. F., & Brito, P. S. D. (2006). Mediated and non-mediated electrochemical oxidation of isopropanol. Applied Surface Science, 252, 6093–6096. DOI:  10.1016/j.apsusc.2005.11.028.CrossRefGoogle Scholar
  33. Smith, W. H., Purdy, G. M., & McKee, S. D. (1997). Comparison of silver(II), cobalt(III) and cerium(IV) as electron transfer mediators in the MEO mixed waste treatment process. In I&EC Symposium American Chemical Society, September 15–17, 1997. Pittsburgh, PA, USA: American Chemical Society.Google Scholar
  34. Taguchi, G. (1990). Introduction to quality engineering: Designing quality into products and processes. New York, NY, USA: McGraw-Hill.Google Scholar
  35. Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. New York, NY, USA: Wiley. DOI:  10.1002/9780470258354.Google Scholar
  36. Vlachogiannis, J. G., & Vlachonis, G. V. (2005). Taguchi’s method in a marine sediment’s heavy-metal determination. International Journal of Environmental Analytical Chemistry, 85, 553–565. DOI:  10.1080/03067310500107245.CrossRefGoogle Scholar
  37. Zhang, H. Y., & Park, S. M. (1995). Kinetic studies on the oxidation of cellulose and its model compounds by Mn(III). Carbohydrate Research, 266, 129–142. DOI:  10.1016/0008-6215(94)00259-i.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Shahrnaz Mokhtari
    • 1
  • Fereidoon Mohammadi
    • 1
    Email author
  • Mehdi Nekoomanesh
    • 2
  1. 1.Petrochemicals Synthesis DepartmentIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Engineering departmentIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations